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Abstract. We present a simple example of phenomenon where collision and dam-
age take place together. We consider an arm with its forearm connected by the
elbow: a plane system made of two rods, one of which is clamped and the other
is hinged at its extremum and free to rotate about it. The rotation angle ϑ of
the forearm is constrained to be neither larger than π nor lower than 0. The rods
are connected through a hair spring, which represents the elbow articulation and
whose damage is accounted for. The damage may be related to the tennis elbow
pathology. We also take into account the discontinuity of the angular velocity of
the forearm, due to collisions when ϑ = 0 or ϑ = π, and provide some numerical
results.

Sommario. Presentiamo un semplice esempio di fenomeno in cui intervengono in-
sieme sia urto che danno. Consideriamo un braccio con il suo avambraccio connesso
mediante il gomito: un sistema piano composto di due aste, la prima bloccata,
la seconda incernierata alla prima in un suo estremo e libera di ruotare attorno
ad esso. L’angolo di rotazione ϑ dell’avambraccio è vincolato ad essere compreso
tra 0 e π. Le aste sono connesse tramite una molla rotazionale, che rappresenta
l’articolazione del gomito e di cui si tiene conto del danno. Il danno può essere
legato alla patologia del “gomito del tennista”. Teniamo conto anche della discon-
tinuità della velocità angolare dell’avambraccio, dovuta agli urti quando ϑ = 0 o
ϑ = π, e forniamo alcuni risultati numerici.

1. Introduction

Let us consider the system represented in fig. 1. It is a schematic representation of an
arm with its forearm connected by the elbow. Its only degree of freedom is the elbow
opening ϑ ∈ [0, π]. We suppose the elbow articulation to act as a hair spring with elastic
constant k. The tennis elbow pathology is caused by repetitive activities, such as hitting
thousands and thousands of tennis balls, or lifting movements, which lead to tiny tears in
the forearm tendon attachment at the elbow. Thus, we take into account the damage of
the articulation through a quantity β ∈ [0, 1].

More detailed biological description of the arm system is given in [1, 2, 3]. It involves
modelling of the smooth and non-smooth motion without damage.

We say that the articulation is sound when β = 1, partly broken when 0 < β < 1 and
completely broken when β = 0 [4, 5]. An external torque C is applied to the system and
our aim is to predict its evolution in terms of the mappings t 7→ ϑ(t) and t 7→ β(t). Let us
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Figure 1. The “tennis elbow”.

note that there may be discontinuities of the angular velocity due to collisions when ϑ = 0
or ϑ = π.

2. Smooth evolution

2.1. Equations of motion. In order to get the equations of motion, we apply the Prin-
ciple of Virtual Power (PVP) [4, 6]. The actual powers are:

Pacc(ϑ̇, β̇) = Jϑ̈ ϑ̇,

Pint(ϑ̇, β̇) = −
(
Cintϑ̇+Bintβ̇

)
,

Pext(ϑ̇, β̇) = Cϑ̇+ Aβ̇,

where J is the mass moment of inertia of the system, A is an external damaging work, C is
the external torque (which is assumed to be a smooth function of time), Bint is an internal
damaging work which takes into account the effect of the damage velocity and Cint is a
torque which accounts for the action of the hair spring on the forearm. If ω and δ are,
respectively, the virtual angular velocity and the virtual damage velocity, the PVP reads

∀ω, δ ∈ R, Pacc(ω, δ) = Pint(ω, δ) + Pext(ω, δ).

By fixing δ = 0, we get

(1) C − Cint = Jϑ̈;

by fixing ω = 0, we get

A−Bint = 0.

For the problem we are going to study, we assume A = 0, but either due to illness, aging,
or overuse, there may be a biological source of damage A 6= 0. Thus, we have

(2) Bint = 0.
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2.2. Constitutive laws. In order to get constitutive laws for the internal quantities Bint

and Cint, we need to choose a free energy, which takes into account the quantities at the
equilibrium, and a pseudopotential of dissipation, which takes into account quantities which
describe the evolution [4, 6]. Thus, we take

Ψ(ϑ, β) =
1

2
kβϑ2 + w(1− β) + L(ϑ) + I(β)

as free energy and

Φ(ϑ̇, β̇) =
1

2
cβ̇2 +

1

2
νϑ̇2 + I−(β̇)

as pseudopotential of dissipation, where k is the elastic constant of the hair spring, w the
cohesion energy of the articulation, c the damage viscosity, ν the motion viscosity, I the
indicator function1 of [0, 1], I− the indicator function of (−∞, 0], L the indicator function
of [0, π] [7, 8]. These choices are due to the constraints on ϑ and β and to the condition of

irreversible damage (β̇ ≤ 0). Thus, we obtain

Cint =
∂Ψ

∂ϑ
+
∂Φ

∂ϑ̇
= kβϑ+ νϑ̇+ Cr,

Bint =
∂Ψ

∂β
+
∂Φ

∂β̇
= cβ̇ +

1

2
kϑ2 − w +Br,

(3)

with Cr ∈ ∂L(ϑ), Br = Brnd + Brd, Brnd ∈ ∂I(β) and Brd ∈ ∂I−(β̇); Cr is the reactive
torque, Br is the reactive damaging-work which is split into its dissipative part Brd and its
non-dissipative part Brnd. Here, ∂f(x) denotes the subdifferential2 of a convex function f
at point x [7, 8]. Note that

Cr =


0 if ϑ ∈ (0, π)

C+ if ϑ = π

C− if ϑ = 0, C+ ≥ 0, C− ≤ 0;

we have Cr ∈ ∅ if ϑ /∈ [0, π], thus relationship Cr ∈ ∂L(ϑ) proves that ϑ ∈ [0, π]. Moreover,

Br =

{
0 if β ∈ (0, 1) and β̇ < 0

B if β = 0 or β = 1 or β̇ = 0, B ∈ R

and we have Br ∈ ∅ if either β /∈ [0, 1] or β̇ > 0, thus relationship Br ∈ ∂I(β) + ∂I−(β̇)

proves that β ∈ [0, 1] and β̇ ≤ 0. Therefore, Cr and Br intervene only when the constraints

1The indicator function IC : Rn → R, R = R ∪ {+∞}, of a convex set C ⊂ Rn is defined by [7, 8]

IC(x) =

{
0, if x ∈ C,
+∞, otherwise.

2The subdifferential of a convex function f : R→ R at point x is the set [7, 8]

∂f(x) = {p ∈ R : f(x) + p(y − x) ≤ f(y),∀y ∈ R}.
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on ϑ, β and β̇ are going to be violated. By inserting the constitutive laws (3) into the
equations of motion (1) and (2), we obtain the following nonlinear differential system in
the unknowns t 7→ ϑ(t) and t 7→ β(t):

(4)


Jϑ̈+ νϑ̇+ kβϑ+ Cr = C

cβ̇ +Br = w − 1
2
kϑ2

ϑ(0) = ϑ0, ϑ̇(0) = ϑ̇0

β(0) = β0.

Remark 1. Note that, from equation (4)2, if k and w satisfy the inequality w − 1
2
kπ2 > 0

we never get damage, because the constraint β̇ ≤ 0 would be violated for any t. On the

other hand, we get damage for all t such that w − 1
2
kϑ2(t) < 0 ⇐⇒

√
2w
k
< ϑ(t) < π and

no damage for all t such that w − 1
2
kϑ2(t) > 0 ⇐⇒ 0 < ϑ(t) <

√
2w
k
.

Remark 2. When β = 0 the system has lost its elasticity: it is still operating, but in a
loose way.

3. Non-smooth evolution

Because we have assumed the external torque C to be smooth, discontinuities of the
angular velocity are only due to collisions of the forearm when ϑ = 0 or ϑ = π, and since
the case of ϑ = 0 is completely analogous, we analyse the collision only for ϑ = π. We do
not take into account discontinuities of the damage velocity.

3.1. Equation of motion. Let Ω = ϑ̇ be the angular velocity and t∗ be a collision time,
when either ϑ = π or ϑ = 0. The angular velocity is discontinuous with

Ω− = lim
∆t→0+

Ω(t∗ −∆t)

being the velocity before the collision, and

Ω+ = lim
∆t→0+

Ω(t∗ + ∆t)

being the velocity after the collision. The Principle of Virtual Work at collision time [9] is

∀Ω̂ ∈ R, J(Ω+ − Ω−)Ω̂ = −P intΩ̂ + P extΩ̂,

where Ω̂ is a virtual angular velocity, P int and P ext are respectively the internal percussion
and the external percussion. The Principle gives the equation of motion

J(Ω+ − Ω−) = −P int + P ext.

We assume no external percussion, and so get

(5) J(Ω+ − Ω−) = −P int.
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3.2. Constitutive law. In order to be consistent with the non-smooth versions of the
energy balance and the second law of thermodynamics [6, 9], the constitutive assumption
on P int has to satisfy the constitutive condition:

(6) P int Ω+ + Ω−

2
≥ 0.

If Φ is a pseudopotential of dissipation, a theorem of convex analysis [7, 8] asserts that if

(7) P int ∈ ∂Φ

(
Ω+ + Ω−

2

)
,

then (6) is satisfied. We also have to choose Φ such that the impenetrability condition –
which, in the case of ϑ = π, reads Ω+ ≤ 0 – is satisfied [9]. Thus, we take

Φ

(
Ω+ + Ω−

2

)
= k̂

(
Ω+ + Ω−

2

)2

+ I−

(
Ω+ + Ω−

2
− Ω−

2

)
,

where k̂ is the dissipation constant in the collision3. It is easy to check that two of the three
properties characterizing a pseudopotential of dissipation, namely, Φ ≥ 0 and Φ convex,

are satisfied; the last one, Φ(0) = 0, is satisfied because I−
(
−Ω−

2

)
= 0, since Ω− ≥ 0 for

ϑ = π. Hence, (7) becomes

P int ∈ k̂(Ω+ + Ω−) + ∂I−(Ω+)

and the equation of motion (5) gives, with the previous constitutive law:

(J − k̂)Ω− ∈ (J + k̂)Ω+ + ∂I−(Ω+).

We suppose to know Ω− and want to compute Ω+. We distinguish between two cases:

• J − k̂ ≥ 0 =⇒ Ω+ = 0 (the forearm does not bounce);

• J − k̂ < 0 =⇒ Ω+ =
J − k̂
J + k̂

Ω− (the forearm bounces).

We can easily repeat all these arguments for a collision when ϑ = 0 and, since the
impenetrability condition becomes Ω+ ≥ 0, we get the following equation of motion:

(J − k̂)Ω− ∈ (J + k̂)Ω+ + ∂I+(Ω+),

I+ being the indicator function of [0,+∞). In this situation, we also have Ω− ≤ 0, thus:

• J − k̂ ≤ 0 =⇒ Ω+ =
J − k̂
J + k̂

Ω− (the forearm bounces);

• J − k̂ > 0 =⇒ Ω+ = 0 (the forearm does not bounce).

3In fact, I−

(
Ω++Ω−

2 − Ω−

2

)
= I−

(
Ω+

2

)
= I− (Ω+), which gives the impenetrability condition.
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(J − k̂)Ω−
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(J − k̂)Ω−

1

Figure 2. Collision for ϑ = π.
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Figure 3. Collision for ϑ = 0.

4. Numerical results

In this section we provide some results of the numerical simulation of equations (4). The
system has been solved with the finite-difference method. In all the following simulations,
two of the initial conditions are always the same: ϑ(0) = 0 and β(0) = 1 (at the beginning
of the process, the forearm lays on the arm and the articulation is sound); on the contrary,

we change the initial angular velocity ϑ̇(0).

4.1. Numerical scheme. The numerical method has been chosen simple, in order to
focus on the mechanical problem. Thus we have chosen an event-driven method [10]. For
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the mathematical analysis of the problem, we refer to [11, 12], where equations with the
same structure are investigated. The solutions are either bounded variation functions of
time or special bounded variation functions of time.

Let T > 0 and T = [0, T ] be the observation time horizon of the system. We split T
into N smaller time intervals, whence the time step ∆t = T

N
. Let t 7→ η(t) be a generic

function. We set
ηk = η(k∆t) (k = 0, . . . , N).

Thus, the first and second derivatives of η are approximated as follows:

η̇(t) ' ηk+1 − ηk
∆t

, η̈(t) ' ηk+1 − 2ηk + ηk−1

∆t2
.

Therefore, assuming the constraints of the problem are satisfied (Br = Cr ≡ 0), the
equations of motion (4) become

(8)


J
ϑk+1 − 2ϑk + ϑk−1

∆t2
+ ν

ϑk+1 − ϑk

∆t
+ kβkϑk+1 = Ck

c
βk+1 − βk

∆t
= w − 1

2
kϑ2

k+1

ϑ0 = 0, β0 = 1.

where the subscript k in the external couple C stresses the fact that this load may depend
on time. Note that, for k = 0, a term containing ϑ−1 results from (8)1. We can compute
the value of ϑ−1 by taking into account that

ϑ̇(0) ' ϑ0 − ϑ−1

∆t
= −ϑ−1

∆t
=⇒ ϑ−1 ' −ϑ̇(0)∆t,

where ϑ̇(0), the initial angular velocity, is known.
At each iteration, the system of algebraic equations (8) allows to compute the values of

ϑk+1 and βk+1, based on the known values of ϑk−1, ϑk and βk. The iteration index k is
increased by one after every computation of ϑk+1 and βk+1.

We take account of the problem constraints as follows:
(i) if ϑk+1 > π (ϑk+1 < 0), set ϑk+1 = π (ϑk+1 = 0) and compute the angular velocity

before the collision,

Ω− =
ϑk − ϑk−1

∆t
.

Then, compute the angular velocity after the collision Ω+ by using the formulae set forth
in section 3, according to whether J− k̂ ≥ 0 or J− k̂ < 0. The value of ϑk+2 is consequently
given by

(9) Ω+ =
ϑk+2 − ϑk+1

∆t
=⇒ ϑk+2 = ϑk+1 + Ω+∆t.

When a collision occurs, after computing ϑk+2 by using (9), the iteration index has to be
increased by one further on, in order for the value of ϑk+2 given by (9) not to be overwritten
by the value of ϑk+2 given by (8)1, as it would be computed in the next iteration;

(ii) if βk+1 < 0 (βk+1 > 1), set βk+1 = 0 (βk+1 = 1);
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Figure 4. t 7→ ϑ(t) with ϑ̇0 = 100 rad s−1, J = 5 kgm2, ν = 50Nms,

k = 105Nm, C = 0, w = 1010Nm, c = 0.1Nms, k̂ = 20 kgm2. The fore-

arm repeatedly collides, with smaller and smaller oscillations, only for ϑ = 0 and

then goes to rest.

(iii) if βk+1 > βk, set βk+1 = βk.

Remark 3. In order to capture as many collisions as possible, the timestep ∆t (i.e., the
number of smaller time intervals N) has to be chosen properly. In all of our simulations,
we chose N = 104 and, in most cases, T = 0.2 s, whence ∆t = 20µs.

4.2. A basic example. We choose the evolution with data J = 5 kg m2, ν = 50Nms,
k = 105Nm, C = 0, w = 1010Nm, c = 0.1Nms, k̂ = 20 kg m2 as a reference to illustrate
the effect of the physical parameters. For this basic example, we choose two initial angular
velocities. We get the graph in fig. 4 with ϑ̇0 = 100 rad s−1 and the graph in fig. 5 with
ϑ̇0 = 500 rad s−1. In the former case, we have collisions only when ϑ = 0 and no damage,
because the initial angular velocity is not sufficient for the forearm to reach ϑ = π and the
cohesion energy w, which may be regarded as the strength of the articulation, is five orders
greater than its stiffness; in the latter one, we still have no damage, but we also have one
collision at ϑ = π, and then repeated collisions at ϑ = 0 until the system goes to rest.

4.3. Influence of the mass moment of inertia. If the mass moment of inertia is in-
creased (J = 30 kg m2) and all the other constants remain unchanged, we get the evolution

of ϑ shown in fig. 6 for ϑ̇0 = 100 rad s−1 and the one shown in fig. 7 for ϑ̇0 = 500 rad s−1; in
both cases, there is still no damage. In the former case, the forearm does not reach ϑ = π
and then goes back to ϑ = 0 because of the effect of the hair spring, and after only one
collision goes to rest. In the latter one, the forearm reaches ϑ = π and goes back after a
collision.

4.4. Influence of the cohesion energy and the damage viscosity. By setting again
J = 5 kg m2, decreasing the cohesion energy (w = 4.5·105Nm), slightly increasing the stiff-
ness and significantly increasing the damage viscosity (k = 1.03 · 105Nm, c = 100Nms),
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Figure 5. t 7→ ϑ(t) with ϑ̇0 = 500 rad s−1, J = 5 kgm2, ν = 50Nms, k =

105Nm, C = 0, w = 1010Nm, c = 0.1Nms, k̂ = 20 kgm2. The forearm collides

only once for ϑ = π and the other collisions are for ϑ = 0, and then it goes

progressively to rest.
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Figure 6. t 7→ ϑ(t) with ϑ̇0 = 100 rad s−1, J = 30 kgm2, ν = 50Nms, k =

105Nm, C = 0, w = 1010Nm, c = 0.1Nms, k̂ = 20 kgm2. Due to the effects of

J and k, the initial velocity is not sufficient for the forearm to reach ϑ = π and

once ϑ reaches its maximum, it goes back to rest.

we get the same evolution as shown in fig. 4 for ϑ̇0 = 100 rad s−1, and the one shown in
fig. 8 for ϑ̇0 = 500 rad s−1. It is quite interesting to note that, while in the former case we
still have no damage, in the latter the damage evolves as shown in fig. 9. In the former
case, we have no collision at ϑ = π and no damage; in the latter, we have one collision
at ϑ = π which occurs at time t∗ ∈ [0, 0.02 s] and damage starts as soon as ϑ >

√
2w/k,

decreasing rapidly, until it reaches a constant value β ∈ [0.15, 0.2].



10 F. BONALDI AND M. FRÉMOND
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Figure 7. t 7→ ϑ(t) with ϑ̇0 = 500 rad s−1, J = 30 kgm2, ν = 50Nms, k =

105Nm, C = 0, w = 1010Nm, c = 0.1Nms, k̂ = 20 kgm2. Having increased the

initial angular velocity, the forearm reaches ϑ = π, collides and then goes back to

rest, stopping after one collision for ϑ = 0.

4.5. Influence of the cohesion energy, the elastic stiffness, the dissipation and
the mass moment of inertia. When the cohesion energy is remarkably decreased (w =

1Nm), together with the dissipation in the collision and the stiffness of the spring (k̂ =
1 kg m2, k = 20Nm), and the mass moment of inertia is significantly increased (J =

105 kg m2), with C = 0, c = 0.1Nms and ϑ̇0 = 100 rad s−1 we obtain the graphs shown

in figs. 10 and 11. If we increase the initial angular velocity to ϑ̇0 = 500 rad s−1 we obtain
results which are not so different, apart from the slope of the damage after it starts and of
ϑ before reaching π. Because of the high value of the mass moment of inertia and the low
value of the stiffness k, when the forearm reaches ϑ = π it collides and does not bounce,
but goes back very slowly to ϑ = 0; damage begins before the collision.

4.6. Influence of the external torque. Let us now examine the cases in which an
external torque is applied on the forearm. We shall distinguish between two subcases.

4.6.1. C is constant. To emphasize the influence of a constant external torque, we have
slightly changed the mass moment of inertia (J = 1 kg m2), the motion viscosity (ν =
3Nms), the elastic stiffness (k = 40Nm) and the cohesion energy (w = 100Nm). The

damage viscosity and the dissipation remain c = 0.1Nms, k̂ = 20 kg m2 and the external
torque is C = 103Nm. With this set of data, we get the graphs shown in figs. 12 and
13 for ϑ̇0 = 100 rad s−1 and the ones shown in figs. 14 and 15 for ϑ̇0 = 103 rad s−1; when
ϑ̇0 = 500 rad s−1, the results are not very different (at least from the point of view of

damage) from the case in which ϑ̇0 = 100 rad s−1. In the former case, we have only
one collision at ϑ = 0 and then many collisions at ϑ = π with more and more reduced
oscillations; damage starts before the first collision at ϑ = π occurs, and decreases very
rapidly to 0. In the latter case, we have several collisions when either ϑ = 0 or ϑ = π;
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Figure 8. t 7→ ϑ(t) with ϑ̇0 = 500 rad s−1, J = 5 kgm2, ν = 50Nms, k =

1.03 ·105Nm, C = 0, w = 4.5 ·105Nm, c = 100Nms, k̂ = 20 kgm2. The forearm

repeatedly collides, but it tends to reach ϑ = 0 not as rapidly as in the case of

fig. 5 because of the damage viscosity.
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Figure 9. t 7→ β(t) with ϑ̇0 = 500 rad s−1, J = 5 kgm2, ν = 50Nms, k =

1.03 · 105Nm, C = 0, w = 4.5 · 105Nm, c = 100Nms, k̂ = 20 kgm2. Damage

starts as soon as ϑ is large enough and it decreases very rapidly till reaching a

constant value. Here, the role of the initial angular velocity is important: indeed,

we get no damage with ϑ̇0 = 100 rad s−1.

damage starts after a very short time from the beginning of the process, it decreases very
rapidly to a value β∗ ∈ [0.1, 0.15] and, after remaining constant and equal to β∗ in a very
short time interval τ ⊂ [0, 0.01 s], it goes to 0.
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Figure 10. t 7→ ϑ(t) with ϑ̇0 = 100 rad s−1, J = 105 kgm2, ν = 50Nms,

k = 20Nm, C = 0, w = 1Nm, c = 0.1Nms, k̂ = 1 kgm2. Due to the large

initial velocity, the forearm reaches ϑ = π and collides without bouncing, but due

to the large mass moment of inertia it goes back very slowly to its equilibrium

position ϑ = 0.
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Figure 11. t 7→ β(t) with ϑ̇0 = 100 rad s−1, J = 105 kgm2, ν = 50Nms,

k = 20Nm, C = 0, w = 1Nm, c = 0.1Nms, k̂ = 1 kgm2. Damage starts before

collision occurs.

4.6.2. C depends on time. We have noted that, for some special dependences of the
external torque on time, the results previously obtained are remarkably changed. If we
choose C(t) = (t+ 3)10 (neglecting physical dimensions) and use the remaining set of data
as identical to the one used to get the evolutions of ϑ and β respectively visualized in figs. 8
and 9, we get the evolutions visualized in figs. 16 and 17. Choosing dependences on time
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Figure 12. t 7→ ϑ(t) with ϑ̇0 = 100 rad s−1, J = 1 kgm2, ν = 3Nms, k =

40Nm, w = 100Nm, c = 0.1Nms, k̂ = 20 kgm2 and C = 103Nm. The effect of

the external torque is to make the system to reach ϑ = π and then to rest after

repeated collisions.
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Figure 13. t 7→ β(t) with ϑ̇0 = 100 rad s−1, J = 1 kgm2, ν = 3Nms, k =

40Nm, w = 100Nm, c = 0.1Nms, k̂ = 20 kgm2 and C = 103Nm. Damage

starts before collision occurs, decreasing very rapidly to 0.

of C such as t, t2, log(t + 1), sin t, et, does not lead to behaviours significantly different
from the ones represented in figs. 8 and 9.

5. Conclusions

The elbow motion predictive theory is based on discontinuum and continuum mechanics.
It is a schematic but realistic model of the evolution of an elbow which may lose its elasticity
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Figure 14. t 7→ ϑ(t) with ϑ̇0 = 103 rad s−1, J = 1 kgm2, ν = 3Nms, k =

40Nm, w = 100Nm, c = 0.1Nms, k̂ = 20 kgm2 and C = 103Nm. If the initial

angular velocity is increased by one order of magnitude, the number of collisions

for ϑ = 0 is remarkably increased.
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Figure 15. t 7→ β(t) with ϑ̇0 = 103 rad s−1, J = 1 kgm2, ν = 3Nms, k =

40Nm, w = 100Nm, c = 0.1Nms, k̂ = 20 kgm2 and C = 103Nm. If the initial

angular velocity is increased by one order of magnitude, damage evolves decreasing

very rapidly after a short time interval from the beginning of the process, remaining

constant for another short time interval and then going to 0.

due to external mechanical damaging actions, for instance in the tennis elbow pathology.
Few parameters are involved. The model, which is coherent from the mechanical, numerical
and mathematical point of view (it can be proved that its equations have a unique solution),
may be sophisticated and upgraded in many ways to fit with every day behavior.
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Figure 16. t 7→ ϑ(t) with ϑ̇0 = 500 rad s−1, J = 5 kgm2, ν = 50Nms, k =

1.03·105Nm, w = 4.5·105Nm, c = 100Nms, k̂ = 20 kgm2, C(t) = (t+3)10. The

time dependence of the external torque makes the forearm to collide one time at

ϑ = π and at ϑ = 0; after these two collisions, it makes various smooth oscillations,

with 0 < ϑ < π, till it reaches again ϑ = π, collides again and remains at this

position due to the effect of the large torque.
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Figure 17. t 7→ β(t) with ϑ̇0 = 500 rad s−1, J = 5 kgm2, ν = 50Nms, k =

1.03 ·105Nm, w = 4.5 ·105Nm, c = 100Nms, k̂ = 20 kgm2, C(t) = (t+3)10. We

have obtained an evolution of damage which is analogous to the one visualized in

fig. 15, but the time interval in which β remains constant is much larger than the

one of fig. 15.
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