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Introduction

@ Smart structures control their
strain state through sensors
and actuators, embedded
within them in the form of
thermo-electromagnetoelastic
material layers. Applications
are found, e.g., in aircraft
structures, health monitoring,
vibration and shape control of
flexible structures.
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@ Classical models of sensors and
actuators proposed in literature
do not account for temperature
influence, neither for possible
magnetic effects (as, e.g., in a
BaTiO3-CoFexO4 complex
[Kondaiah et al., 2013]).
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@ Enrichment of the model by
adding the energy balance
equation, so as to account for
temperature influence.

@ Validation of the typical
quasi-static assumption, by
carrying out a formal
nondimensionalization of the
equations.

@ Deduction of a thin
thermo-electromagnetoelastic
plate model, based on the
quasi-static 3D model, by
means of the asymptotic
expansions method.
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Problem Statement

Let  C R3 be an open bounded region and X = (u,E,H,0).

Field Equations

pﬁ—diva(.’?):f x€N, t>0,
divD(X) = 0 x€EQ, t>0,
divB(X) =0 x€N, t>0,
D(X) -V xH=0 x€Q, t>0,
B(X)+VXxE=0 x€EQ, t>0,
o1
S(X) + 7-diva(f) = x€Q, t>0.

0

v
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(u,E,H,0).

Constitutive Assumptions

o(X) = Ce(u) — PE — RH — 36,
(.:Y\): e(u)+XE+aH+p6
()?) =RTe(u) + aE + MH + mb,
S(X)=B:e(u)+p-E+m-H+c,0,

q(0) = —QVeé.
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B(X)+VXxE=0 x€Q t>0, | §F)=g
P
S(X) + T—divq(@) =r xe, t>0. q(0) = —QVeé.

0

(u,E,H,0).

e(u)+p-E+m-H+ ¢,0,

Initial Conditions

u(x,0) = uo(x),
u(x,0) = ui(x),
E(X 0) Eo(x),
H(x,0) = Ho(x),
6(x,0) = fo(x).

o(X)n =

(1]

D(X) n=
B(i’\)-n:b on 9
—q(f) -n=p ond

Boundary Conditions

on 901 x (0,tp), u=1u
d ondQ x(0,t9), TE=E
x (0,tg), TH=H

x (0,t0), O =0

on 902 x (0,tp),
on 0y X
on 8Q2 X

)
)
)
on 902 x (0,tp).

)

)
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Nondimensionalization

By carrying out a formal nondimensionalization of the evolution field equations, with an
appropriate choice of the units of measurement of E and H, we get two expressions of the form

VXE;,=-0 (MTHT +xRTe(0,) + atco o By + vmrér) ,
VxH,=4§ (XTET +xPTe(i,) + ayco arHy + cprér> ,

with § ~ 105,
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Nondimensionalization

By carrying out a formal nondimensionalization of the evolution field equations, with an
appropriate choice of the units of measurement of E and H, we get two expressions of the form

VXE;,=-¢ (MTHT + nere(ﬁT) + atco o E, + vaéT) ,
VxH,=¢ <XTET + XPZe(uT) + atco aH, + cprér) ,
with § ~ 1075,
@ In the limit 6 — 0, if the time derivatives on the right-hand sides are bounded, we get
Quasi-Static Assumption

VXE,=0<= E, = Vo,
VxH,=0<+= H, =-V(
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R
Quasi-Static Problem for a Plate-Like Body

We now identify 2 with a plate-like region Q° of thickness 2¢h. Let
X°® = (u®, 9%, (%, 0%). The field equations become

Quasi-Static System

pri — divee® (X°) = f° x€Q°,t>0,
divD*(X%) =0 x €, t>0,
div'B*(X°) =0 x €, >0,

ST(X°) + Tidivaqa(Gs) =r° xe,t>0.
0

WEEM X ECCIY
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.
Quasi-Static Problem for a Plate-Like Body

We now identify 2 with a plate-like region Q° of thickness 2¢h. Let
X°® = (u®, 9%, (%, 0%). The field equations become

Quasi-Static System

pri — divee® (X°) = f° x €Q°,t>0,
divD*(X%) =0 x €, t>0,
div'B*(X°) =0 x €, >0,

S5(X%) + Tidiquf(af) —rf x€Q%,t>0.
0

I 1&h QF :=w x (—eh,eh),

A 90" =T UTY,

y I'® := v x (—¢h,eh), v := 0w,
% :=w x {£eh}.

I* =TjUri, I'§:=~ x (—¢h,eh)
and I'f := 1 X (—¢h,eh).
Let also I'* :=T'+ UTY].
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Initial and Boundary Conditions

Initial Conditions
u®(x%,0) = u§(x°) in Q°,
u®(x%,0) = uj(x°) in Q°,
0°(x=,0) = 05(x°) in QF.
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Initial and Boundary Conditions

Initial Conditions Thermo-mechanical Boundary Conditions

u®(x%,0) = ug(x* in Q°,
1‘15Ex‘E 0; = uggxgg in QF, {ue - on 5, i e 1
6°(x*,0) = esl(xf) in Q°. o°(X°)n° =g° onT*, —q°(6°) -n® = o° onT®.
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Initial and Boundary Conditions

izl (el dizus Thermo-mechanical Boundary Conditions

u®(x%,0) = ug(x* in QF,
usgxf 0; — uggxfg in Q° {“6 = onlG,  6°=0 om I,
o S e | lotxme =g onTt, g (@) me=g onl*.

Electromagnetic Boundary Conditions

©* =0 on I'¢, ¢ =(Fe onT%,
DS(x°)-n°=d° onl%, B(X°)-n°=0 onl".

@ Our electromagnetic boundary conditions correspond to the case of a plate behaving
simultaneously as a piezoelectric sensor and as a piezomagnetic actuator.

@ By varying electromagnetic boundary conditions, one can reproduce a sensor-like,
actuator-like or mixed behavior of the plate as a 3D body [Licht & Weller, 2010].
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.
Asymptotic Analysis

Assumptions
@ Displacement and temperature scalings:
ug (x5, 1) = ua(e) (%, 1), u§(x*,t) = e tuz(e)(x, 1),

0% (x5,t) = 0(e)(x, 1), VxE=nx€Q, t>0.

@ In order for the 2D plate model to reproduce the desired electromagnetic behavior,
precise scaling assumptions on ¢ and ¢ must be made [Licht & Weller, 2007]. In
the case of the piezoelectric sensor - piezomagnetic actuator problem, we have

O = e 1), CT(x ) = eC()(x, 1), VX =mx €T, >0,
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Asymptotic Analysis

Assumptions
@ Displacement and temperature scalings:
ug (x°,t) = ua(e)(x,t), us(x®,t) = 5_1U3(5)(x, t),
0% (x5,t) = 0(e)(x, 1), VxE=nx€Q, t>0.
@ In order for the 2D plate model to reproduce the desired electromagnetic behavior,

precise scaling assumptions on ¢ and ¢ must be made [Licht & Weller, 2007]. In
the case of the piezoelectric sensor - piezomagnetic actuator problem, we have

O = e 1), CT(x ) = eC()(x, 1), VX =mx €T, >0,

@ In general, the desired electromagnetic behavior of the plate is obtained by varying
the powers of ¢ in the scalings of ¢ and ( [Licht & Weller, 2007]:

e°(x) =cPp(e)(x), ¢"(x7) =€"C(e)(x), p,q€{0,1}.

@ Thus, boundary conditions and scaling assumptions both play a crucial role in the
determination of a 2D electromagnetic plate model.
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.
Asymptotic Analysis

Results

@ The limit displacement field satisfies the Kirchhoff-Love kinematical assumptions:

(%, 23) = up(X) — 23V,w(X) and ul(X,z3) = w(X).
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.
Asymptotic Analysis

Results

@ The limit displacement field satisfies the Kirchhoff-Love kinematical assumptions:
(%, 23) = up(X) — 23V,w(X) and ul(X,z3) = w(X).

@ The limit temperature variation is independent of z3: 0°(%, z3) = 9(X).
@ The limit electric potential is independent of z3: ¢°(X,z3) = ¢(X).

@ The limit magnetic potential is a quadratic function of z3:

2
& x3) =Y 2" (R)as,
k=0

o= ~ b= ~
zozz%—f—};—zA:VTVﬂu, 2! ::CZ< , zzzz—%A:VTVTw, A= Bs
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Limit Evolution Problems

@ The limit problem decouples into two evolution subproblems.
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Limit Evolution Problems

@ The limit problem decouples into two evolution subproblems.

The Flexural Problem

div,div, M — 222 A 45 + 2hpid = f inw x (0, %),
w(0) = wo, w(0) =wy in w,
%pvfw v —div,(Mv) = V,(Mv-7) -7 =G5 on v X (0,%),
My v =0 on 71 X (0, o),
w=30,w=0 on o %X (0,%0),
where M := 2—;)l:ijinTVTw, A =C + ;ﬁ,{; ® ﬁ,g.
33
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Limit Evolution Problems

@ The limit problem decouples into two evolution subproblems.

The 2D Thermo-Piezoelectric Evolution Problem

2hpiiy — div,N =5+ R3[V.(] in w x (0, o),
div,D =d + &3 - [V+(] in w x (0,t),
S+ div,q = i + ms[¢] in w x (0, t0),
up(0) =ug,, ug(0) =ug,1, 9(0) =9 inw,

Nv =7 — [¢(]Rsv on v1 x (0, t0),
D.v=[as v on 71 x (0,to),
—-q-v=p0 on v1 x (0,t0),
ug =0, ¢=9=0 on o x (0,t0),

where _ _ _ _
N := 2h(C &(ug) + PV.¢ — B9),
D :=2h(PT&(uy) — XV, ¢ + pv),
S:=2h(B:8(up) — B V- + &),
q:=—2QV.9.
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Material constants for a BaTiO3-CoFesO4 complex

Table 1 Material properties of PZT*5 and magneto-electro-thermo-elastic composite with volume fraction, v;
= 0.6 of BaTiO; (Chen et al. (2007), Challagulla and Georgiades (2011), Aboudi (2001), Biju et al. (2011))

Elastic constants: w=06 PZT-5 Magnetic Permeability: w=06 PZT5
¢11= ¢2 (GPa) 200 99.2 111 = piz (107N §%/CP) 15 -
¢12(GPa) 110 54.01 w3 (107N s¥CYH 0.75 -
¢13= ¢ (GPa) 110 50.77 Piezomagnetic constants:
¢33 (GPa) 190 86.85 G31= 32 (N/A m) 200 -
Cas= cs3 (GPa) 45 21.1 g3 (N/A m) 260 -
ces (GPa) 45 22.593 ¢15 (N/Am) 180 -
Piezoelectric constants: Magnetoelectric constant:
31 = e3; (C/m?) 35 2720 iy =My (102 N s/V C) 6 -
ey; (C/m®) 11 15.11 msy (10 N s/V C) 2500 -
e,5 (C/m%) 0 12.32 Pyroelectric constants:
Dielectric constant: P2 (10° C/m*K) -124
11 =822 (10°CH¥N m?) 0.9 1.53 Pyromagnetic constants:
£33 (10°CHYN m?) 75 15 7, (10° NAmK) 5.92 -
Thermal expansion coefficients: Density:
Bii= P (10° 1K) 12.9 15 p (kg/m’) 5600 7750
B (10° 1/K) 7.8 2
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