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Introduction

Smart structures control their
strain state through sensors
and actuators, embedded
within them in the form of
thermo-electromagnetoelastic
material layers. Applications
are found, e.g., in aircraft
structures, health monitoring,
vibration and shape control of
flexible structures.

Classical models of sensors and
actuators proposed in literature
do not account for temperature
influence, neither for possible
magnetic effects (as, e.g., in a
BaTiO3-CoFe2O4 complex
[Kondaiah et al., 2013]).

⇒

Outline

Enrichment of the model by
adding the energy balance
equation, so as to account for
temperature influence.

Validation of the typical
quasi-static assumption, by
carrying out a formal
nondimensionalization of the
equations.

Deduction of a thin
thermo-electromagnetoelastic
plate model, based on the
quasi-static 3D model, by
means of the asymptotic
expansions method.
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Problem Statement

Let Ω ⊂ R3 be an open bounded region and X̂ := (u,E,H, θ).

Field Equations



ρü− divσ(X̂ ) = f x ∈ Ω, t > 0,

divD(X̂ ) = 0 x ∈ Ω, t > 0,

divB(X̂ ) = 0 x ∈ Ω, t > 0,

Ḋ(X̂ )−∇×H = 0 x ∈ Ω, t > 0,

Ḃ(X̂ ) +∇×E = 0 x ∈ Ω, t > 0,

Ṡ(X̂ ) +
1

T0
divq(θ) = r x ∈ Ω, t > 0.

Constitutive Assumptions

σ(X̂ ) = Ce(u)−PE−RH− βθ,

D(X̂ ) = PT e(u) + XE + αH + pθ,

B(X̂ ) = RT e(u) + αE + MH + mθ,

S(X̂ ) = β : e(u) + p ·E + m ·H + cvθ,

q(θ) = −Q∇θ.

Initial Conditions
u(x, 0) = u0(x),
u̇(x, 0) = u1(x),
E(x, 0) = E0(x),
H(x, 0) = H0(x),
θ(x, 0) = θ0(x).

Boundary Conditions
σ(X̂ )n = g on ∂Ω1 × (0, t0), u = u on ∂Ω2 × (0, t0),

D(X̂ ) · n = d on ∂Ω1 × (0, t0), TE = E on ∂Ω2 × (0, t0),

B(X̂ ) · n = b on ∂Ω1 × (0, t0), TH = H on ∂Ω2 × (0, t0),

−q(θ) · n = % on ∂Ω1 × (0, t0), θ = θ on ∂Ω2 × (0, t0).

F. Bonaldi WCCM XI - ECCM V July 22nd, 2014 2 / 9



Problem Statement

Let Ω ⊂ R3 be an open bounded region and X̂ := (u,E,H, θ).

Field Equations
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Nondimensionalization

By carrying out a formal nondimensionalization of the evolution field equations, with an
appropriate choice of the units of measurement of E and H, we get two expressions of the form

∇×Er = −δ
(
MrḢr + κRT

r e(u̇r) + α+c0 αrĖr + υmr θ̇r
)
,

∇×Hr = δ
(
XrĖr + χPTr e(u̇r) + α+c0 αrḢr + ς pr θ̇r

)
,

with δ ' 10−5.

In the limit δ → 0, if the time derivatives on the right-hand sides are bounded, we get

Quasi-Static Assumption

∇×Er = 0⇐⇒ Er = −∇ϕr
∇×Hr = 0⇐⇒ Hr = −∇ζr
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MrḢr + κRT

r e(u̇r) + α+c0 αrĖr + υmr θ̇r
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Quasi-Static Problem for a Plate-Like Body

We now identify Ω with a plate-like region Ωε of thickness 2εh. Let
X ε := (uε, ϕε, ζε, θε). The field equations become

Quasi-Static System
ρεüε − divεσε(X ε) = fε x ∈ Ωε, t > 0,
divεDε(X ε) = 0 x ∈ Ωε, t > 0,
divεBε(X ε) = 0 x ∈ Ωε, t > 0,

Ṡε(X ε) +
1

T0
divεqε(θε) = rε x ∈ Ωε, t > 0.

Ωε := ω × (−εh, εh),
∂Ωε = Γε ∪ Γε±,
Γε := γ × (−εh, εh), γ := ∂ω,
Γε± := ω × {±εh}.

Γε = Γε0 ∪ Γε1, Γε0 := γ0 × (−εh, εh)
and Γε1 := γ1 × (−εh, εh).
Let also Γ̂ε := Γ± ∪ Γε1.
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ρεüε − divεσε(X ε) = fε x ∈ Ωε, t > 0,
divεDε(X ε) = 0 x ∈ Ωε, t > 0,
divεBε(X ε) = 0 x ∈ Ωε, t > 0,
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Initial and Boundary Conditions

Initial Conditionsuε(xε, 0) = uε0(xε) in Ωε,
u̇ε(xε, 0) = uε1(xε) in Ωε,
θε(xε, 0) = θε0(xε) in Ωε.

Thermo-mechanical Boundary Conditions{
uε = 0 on Γε0, θε = 0 on Γε0,

σε(X ε)nε = gε on Γ̂ε, −qε(θε) · nε = %ε on Γ̂ε.

Electromagnetic Boundary Conditions{
ϕε = 0 on Γε, ζε = ζ±,ε on Γε±,
Dε(X ε) · nε = dε on Γε±, Bε(X ε) · nε = 0 on Γε.

Our electromagnetic boundary conditions correspond to the case of a plate behaving
simultaneously as a piezoelectric sensor and as a piezomagnetic actuator.

By varying electromagnetic boundary conditions, one can reproduce a sensor-like,
actuator-like or mixed behavior of the plate as a 3D body [Licht & Weller, 2010].
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Asymptotic Analysis

Assumptions

Displacement and temperature scalings:

uεα(xε, t) = uα(ε)(x, t), uε3(xε, t) = ε−1u3(ε)(x, t),

θε(xε, t) = θ(ε)(x, t), ∀xε = πεx ∈ Ω
ε
, t > 0.

In order for the 2D plate model to reproduce the desired electromagnetic behavior,
precise scaling assumptions on ϕ and ζ must be made [Licht & Weller, 2007]. In
the case of the piezoelectric sensor - piezomagnetic actuator problem, we have

ϕε(xε, t) = ϕ(ε)(x, t), ζε(xε, t) = εζ(ε)(x, t), ∀xε = πεx ∈ Ω
ε
, t > 0.

In general, the desired electromagnetic behavior of the plate is obtained by varying
the powers of ε in the scalings of ϕ and ζ [Licht & Weller, 2007]:

ϕε(xε) = εpϕ(ε)(x), ζε(xε) = εqζ(ε)(x), p, q ∈ {0, 1}.

Thus, boundary conditions and scaling assumptions both play a crucial role in the
determination of a 2D electromagnetic plate model.
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Asymptotic Analysis

Results

The limit displacement field satisfies the Kirchhoff-Love kinematical assumptions:

ũ0(x̃, x3) = uH(x̃)− x3∇τw(x̃) and u0
3(x̃, x3) = w(x̃).

The limit temperature variation is independent of x3: θ0(x̃, x3) = ϑ(x̃).

The limit electric potential is independent of x3: ϕ0(x̃, x3) = φ(x̃).

The limit magnetic potential is a quadratic function of x3:

ζ0(x̃, x3) =

2∑
k=0

zk(x̃)xk3 ,

z0 := ζ++ζ−

2
+ h2

2
Λ̃ : ∇τ∇τw, z1 := ζ+−ζ−

2h
, z2 := − 1

2
Λ̃ : ∇τ∇τw, Λ̃ := R̃3

M̃33
.
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ζ0(x̃, x3) =
2∑
k=0

zk(x̃)xk3 ,

z0 := ζ++ζ−

2
+ h2

2
Λ̃ : ∇τ∇τw, z1 := ζ+−ζ−

2h
, z2 := − 1

2
Λ̃ : ∇τ∇τw, Λ̃ := R̃3

M̃33
.
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Limit Evolution Problems

The limit problem decouples into two evolution subproblems.

The Flexural Problem

divτdivτM̃− 2h3

3
ρ∆τ ẅ + 2hρẅ = f̃3 in ω × (0, t0),

w(0) = w0, ẇ(0) = w1 in ω,
2h3

3
ρ∇τ ẅ · ν − divτ (M̃ν)−∇τ (M̃ν · τ ) · τ = g̃3 on γ1 × (0, t0),

M̃ν · ν = 0 on γ1 × (0, t0),

w = ∂νw = 0 on γ0 × (0, t0),

where M̃ :=
2h3

3
Ã∇τ∇τw, Ã := C̃ +

1

M̃33

R̃3 ⊗ R̃3.
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Limit Evolution Problems

The limit problem decouples into two evolution subproblems.

The 2D Thermo-Piezoelectric Evolution Problem

2hρüH − divτ Ñ = s̃ + R̃3[[∇τ ζ]] in ω × (0, t0),

divτ D̃ = d̃+ α̃3 · [[∇τ ζ]] in ω × (0, t0),

˙̃S + divτ q̃ = h̃+ m̃3[[ζ̇]] in ω × (0, t0),

uH(0) = uH,0, u̇H(0) = uH,1, ϑ(0) = ϑ0 in ω,

Ñν = r̃− [[ζ]]R̃3ν on γ1 × (0, t0),

D̃ · ν = [[ζ]]α̃3 · ν on γ1 × (0, t0),

−q̃ · ν = %̃ on γ1 × (0, t0),

uH = 0, φ = ϑ = 0 on γ0 × (0, t0),

where 
Ñ := 2h(C̃ ẽ(uH) + P̃∇τφ− β̃ϑ),

D̃ := 2h(P̃T ẽ(uH)− X̃∇τφ+ p̃ϑ),

S̃ := 2h(β̃ : ẽ(uH)− p̃ · ∇τφ+ c̃vϑ),

q̃ := − 2h
T0

Q̃∇τϑ.
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