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Viral Capsids

Functions, structure, geometry

Viral Capsids

Viral capsids: nanometre-sized protein shells that enclose and protect the
genetic materials (RNA or DNA) of viruses in a host cell, transport and
release those materials inside another host cell.

In most cases, their shape is either helical (nearly cylindrical) or
icosahedral (nearly spherical).

Typical examples of spherical capsids: STMV and CCMV capsids.
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Viral Capsids

Functions, structure, geometry

Viral Capsids

They consists of several structural subunits, the capsomers, made up by
one or more individual proteins. In spherical capsids, the capsomers are
classified as pentamers and hexamers.

STMV capsid: 60 copies of a single protein, clustered into 12
pentamers.

CCMV capsid: 180 copies of a single protein, clustered into 12
pentamers and 20 hexamers.
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Viral Capsids

Functions, structure, geometry

Triangulation Number

There are 12 pentamers in any spherical capsid. The number of hexamers
depends on the T-number of the capsid (Caspar and Klug, 1962).
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Viral Capsids

Functions, structure, geometry

Triangulation Number

T “ 1 ùñ only pentamers (STMV capsid)

T ą 1 ùñ pentamers + hexamers
Example: T “ 3 (CCMV capsid)
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Viral Capsids

Functions, structure, geometry

Triangulation Number

T “ 1 capsid (left) and T “ 3 capsid (right) surfaces
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Viral Capsids

Functions, structure, geometry

Geometry

The thickness of a spherical capsid is actually non-uniform. Ideal values
of the inner and outer radii of the STMV capsid are R1 “ 55.4 Å and
R2 “ 86 Å (Yang et al., 2009). The thickness of the spherical shell is
then tS “ 30.6 Å and its middle surface has radius ρo “ 70.7 Å.
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Viral Capsids

Density, material moduli

Density, material moduli

Mass density of the STMV capsid: δo “ 823.82 kg{m3.

From the measured value of the longitudinal sound speed cl in
STMV crystals, Yang et al. determined the value of the Young’s
modulus of the STMV capsid. The Poisson ratio is thought to be
close to that of soft condensed matter, i.e., ν “ 0.3. In a generic
three-dimensional isotropic elastic continuous body,

c l “

d

E p1´ νq

δop1` νqp1´ 2νq
.

Remark

This formula does not account for the shell-like geometry of the STMV
capsid: it involves only its density, but none of its geometrical features,
such as the thickness and the radius of the middle surface.
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Shell Theory

Part I

Linearly Elastic Spherical Shells
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Shell Theory

Features

The shell is capable of both transverse shear deformation and
thickness distension.

The shell is transversely isotropic with respect to the radial
direction, with fiber-wise constant elastic moduli, in order to
account for the rotational symmetries of the capsomers.

The thickness may vary over the middle surface.
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Shell Theory

Geometry

Middle Surface

Curvilinear coordinates z1 “ ϑ, z2 “ ψ.
Let S – p0, πq ˆ p0, 2πq.

c1

c2

c3

o

S x

ψ

ϑ

e1

e2

n

c(ψ)

ρo

1

S Q pϑ, ψq Ø x “ xpϑ, ψq “ o ` xpϑ, ψq P S,
xpϑ, ψq “ ρopsinϑ cpψq ` cosϑ c3q,

cpψq “ cosψ c1 ` sinψ c2.
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Shell Theory

Geometry

Local Bases

Covariant basis

e1 “
Bx
Bϑ
“ ρopcosϑ c ´ sinϑ c3q

e2 “
Bx
Bψ

“ ρo sinϑ c 1

e3 “ n “ ρ´1
o x “ sinϑ c ` cosϑ c3

Contravariant basis

e1 “ s∇ϑ “ ρ´2
o e1

e2 “ s∇ψ “ pρo sinϑq´2 e2

e3 “ n

Physical basis

eă1ą “
e1

|e1|

eă2ą “
e2

|e2|

eă3ą “ n
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Shell Theory

Geometry

Shell-like Region

Curvilinear coordinates z1 “ ϑ, z2 “ ψ, z3 “ ζ.
Let I – p´ε,`εq.

G(S, ε)

S
2ε

n(x)

x
x + hn(x)

x − hn(x)

Sh

S−h

1

Sˆ I Q pϑ, ψ, ζq Ø p “ ppϑ, ψ, ζq “ o ` ppϑ, ψ, ζq P GpS, εq,
ppϑ, ψ, ζq “ xpϑ, ψq ` ζnpϑ, ψq.

We can define analogous local bases for any p P GpS, εq.
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Shell Theory

Kinematics

Kinematics

Displacement field

upx , ζ; tq “
p0q
u px , tq ` ζ

p1q
u px , tq,

p0q
u px , tq “ apx , tq ` wpx , tqnpxq,

p1q
u px , tq “ ϕpx , tq ` γpx , tqnpxq,

apx , tq ¨ npxq “ 0, ϕpx , tq ¨ npxq “ 0, @x P S, @t P p0,`8q

a “ aă1ą eă1ą` aă2ą eă2ą

ϕ “ ϕă1ą eă1ą` ϕă2ą eă2ą

Six scalar parameters: aă1ą, aă2ą, ϕă1ą, ϕă2ą,w , γ

Strain tensor

E “ sym∇u “ 1
2

`

∇u `∇uT
˘
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Shell Theory

Kinematics

Kinematics
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Shell Theory

Field Equations

Weak Formulation

Let S be the Piola stress tensor, d o the distance force per unit volume
and co the contact force per unit area. Define the internal virtual work

W intpGq rδus–
ż

G
S ¨∇δu

and the external virtual work

WextpGq rδus–
ż

G
d o ¨ δu `

ż

BG
co ¨ δu.

Principle of Virtual Work:

@δu, W intpGq rδus “WextpGq rδus .
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Shell Theory

Field Equations

Weak Formulation

By integration over the thickness,

W intpGq rδus “
ż

S

ˆ

sF ¨ s∇δp0qu ` sM ¨ s∇δp1qu ` f p3q ¨ δ
p1q
u
˙

,

where

sF –

ˆ
ż

I

αSgβ dζ
˙

b eβ , sM –

ˆ
ż

I

αζSgβ dζ
˙

b eβ ,

f p3q –
ż

I

αSn dζ .
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Shell Theory

Field Equations

Weak Formulation

By integration over the thickness,

WextpGq rδus “
ż

S

ˆ

qo ¨ δ
p0q
u ` r o ¨ δ

p1q
u
˙

,

where

qo –

ż

I

α d o dζ ` α
`c`o ` α

´c´o ,

r o –

ż

I

αζd o dζ ` ε
`

α`c`o ´ α
´c´o

˘

.
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Shell Theory

Field Equations

Balance Equations

The Principle of Virtual Work reads
ż

S

ˆ

sF ¨ s∇δp0qu ` sM ¨ s∇δp1qu ` f p3q ¨ δ
p1q
u
˙

“

ż

S

ˆ

qo ¨ δ
p0q
u ` r o ¨ δ

p1q
u
˙

.

By localization,

sDiv sF ` qo “ 0,

sDiv sM ´ f p3q ` r o “ 0.
(1)

BS “ H ùñ no boundary conditions

On inserting S “ CrE s, with E “ sym∇u, into the previous definitions,
(1) yields a system of six scalar equations in terms of the six kinematical
parameters.
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Natural Vibrations Conclusions and Directions for Future Research

Part II

Analysis of Natural Vibrations
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Natural Vibrations Conclusions and Directions for Future Research

Assumptions

1 The only distance actions per unit area involved are the inertial
parts of qo and r o (d o ” d in

o “ ´δo :u). No contact forces per unit
area: co ” 0.

2 As in the majority of the literature about capsids

We consider the subcase of homogeneous and isotropic
response
We assume the thickness uniform over the middle surface

3 We restrict attention on axisymmetric vibrations: kinematical
parameters independent of ψ. Notation: B

Bϑ p¨q “ p¨q
1
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Natural Vibrations Conclusions and Directions for Future Research

Radial Vibrations without Thickness Changes

Radial Vibrations without Thickness Changes

u “ wn

Governing equation

G pw2 ` cotϑ w 1q ´
2E

p1` νqp1´ 2νq
w “ ρ2

oδo

ˆ

1`
ε2

3ρ2
o

˙

:w

w 1 “ 0 ùñ :w ` ω2
0w “ 0, ω2

0 “
2E

ρ2
oδo

´

1` ε2

3ρ2
o

¯

p1` νqp1´ 2νq

wpϑ, tq “ c cosϑ cospω1tq ñ ω2
1 “

E p3´ 2νq

ρ2
oδo

´

1` ε2

3ρ2
o

¯

p1` νqp1´ 2νq

ω2
1 ą ω2

0
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Radial Vibrations without Thickness Changes

Radial Vibrations without Thickness Changes

wpϑ, tq “ c cosϑ cospω1tq

S

ϑ

1
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Natural Vibrations Conclusions and Directions for Future Research

Uniform Radial Vibrations with Thickness Changes

Uniform Radial Vibrations with Thickness Changes

u “ pw ` ζγqn

w “ pw cospωtq, γ “ pγ cospωtq

Governing equations

´ ω2ρ2
oδo

ˆˆ

1`
ε2

3ρ2
o

˙

pw `
2ε2

3ρo
pγ

˙

`
2E

p1` νq2p1´ 2νq

`

p1` νq pw ` p1` ν2qρopγ
˘

“ 0,

(2)

´ω2ε2δo

ˆ

2

3
pw ` ρo

ˆ

1

3
`

ε2

5ρ2
o

˙

pγ

˙

`

`
E

1´ 2ν

"

2ε2

3ρo
pγ `

1

1` ν

„

2ν pw `

ˆ

p1´ νqρo ` p1` νq
ε2

3ρo

˙

pγ

*

“ 0

(3)
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Natural Vibrations Conclusions and Directions for Future Research

Uniform Radial Vibrations with Thickness Changes

Uniform Radial Vibrations with Thickness Changes

(2) : ω2 “
apw ` bpγ

c pw ` dpγ

ùñ pγ “ K˘ pw , K˘ “ K˘pE , ν, δo , ρo , εq

(3) : ω2 “
e pw ` gpγ

hpw ` kpγ

ω2
˘ “

2E
`

p1` νq ` p1` ν2qρoK˘
˘

ρ2
oδop1` νq

2p1´ 2νq
´´

1` ε2

3ρ2
o

¯

` 2ε2

3ρo
K˘

¯
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Parallel-Wise Twist Vibrations

Parallel-Wise Twist Vibrations

u “ aă2ą eă2ą

Governing equation

aă2ą
2 ` cotϑ aă2ą

1 ´ cot2ϑ aă2ą “
ρ2
oδo
G

ˆ

1`
ε2

3ρ2
o

˙

:aă2ą

aă2ąpϑ, tq “ c sinϑ cosϑ cospωtq ùñ ω2 “
5G

ρ2
oδo

´

1` ε2

3ρ2
o

¯
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Parallel-Wise Twist Vibrations

Parallel-Wise Twist Vibrations

S

ϑ

a<2>
(

π
2 , t

)
= 0

a<2>(0, t) = 0

a<2>(π, t) = 0

1
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Parallel-Wise Shear Vibrations

Parallel-Wise Shear Vibrations

u “ ζϕă2ą eă2ą

e<2>

S

1

Governing equation

ε2

ρ2
o

`

ϕă2ą
2 ` cotϑ ϕă2ą

1 ` p1´ cot2ϑqϕă2ą
˘

´ 3ϕă2ą “
ε2δo

G

ˆ

1`
3

5

ε2

ρ2
o

˙

:ϕă2ą
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Parallel-Wise Shear Vibrations

Parallel-Wise Shear Vibrations

ε “ 15.3 Å, ρo “ 70.7 Å (Yang et al., 2009) ñ
3ε2

5ρ2
o

« 0.024

ñ approximate frequency rω2 “
3G

ε2δo

Without approximation,

ϕă2ąpϑ, tq “ c sinϑ cosωt ùñ ω2 “
G

3ε2δo

´

1` 3
5
ε2

ρ2
o

¯

Remark

Both ω2 and rω2 diverge as εÑ 0.
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Conclusions and Directions for Future Research

Conclusions

We have set forth some simple cases of natural vibrations that might be
considered as a reference to infer a correct evaluation of Young’s
modulus and Poisson’s ratio for a spherical capsid, when thought of as an
isotropic body, by carrying out experiments that induce the relative
vibrational modes.

Directions for Future Research

Multiscale modeling of spherical capsids

Full capsids in a hydrostatic environment
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