A Hybrid High-Order method for Kirchhoff-Love plate bending problems

Francesco Bonaldi

joint work with D. A. Di Pietro, G. Geymonat, and F. Krasucki

MOX NuMeth Seminar
November 16, 2017

Outline

(1) Motivations
(2) Key ideas for HHO
(3) Discrete setting

- Mesh
- Projectors on local polynomial spaces

4 The HHO method

- Local unknowns and interpolation
- Local deflection reconstruction
- Global problem
- Error estimates
- Numerical examples
- Discrete PVW \& Laws of action-reaction
(5) Conclusions \& perspectives

Motivations

- Let $\Omega \subset \mathbb{R}^{2}$ be an open, bounded, connected polygonal 2D domain

$\mathrm{K}-\mathrm{L}$ clamped plate bending problem

For $f \in L^{2}(\Omega)$, find $u \in H_{0}^{2}(\Omega)$ such that

$$
\left(\mathbb{A} \nabla^{2} u, \nabla^{2} v\right)=(\mathrm{f}, v), \quad \forall v \in \mathrm{H}_{0}^{2}(\Omega)
$$

Motivations

- Let $\Omega \subset \mathbb{R}^{2}$ be an open, bounded, connected polygonal 2D domain

K-L clamped plate bending problem

For $f \in L^{2}(\Omega)$, find $u \in H_{0}^{2}(\Omega)$ such that

$$
\left(\mathbb{A} \nabla^{2} u, \nabla^{2} v\right)=(\mathrm{f}, v), \quad \forall v \in \mathrm{H}_{0}^{2}(\Omega)
$$

- A conforming discretization is computationally expensive (C^{1} elements)

■ HCT energy-error estimate [Ciarlet, 1974]: provided $u \in H^{4}(\Omega)$,

$$
\left\|u-u_{h}\right\|_{H^{2}(\Omega)} \leqslant \mathrm{Ch}^{2}|u|_{\mathrm{H}^{4}(\Omega)}
$$

Motivations

- Let $\Omega \subset \mathbb{R}^{2}$ be an open, bounded, connected polygonal 2D domain

K-L clamped plate bending problem

For $f \in L^{2}(\Omega)$, find $u \in H_{0}^{2}(\Omega)$ such that

$$
\left(\mathbb{A} \nabla^{2} u, \nabla^{2} v\right)=(\mathrm{f}, v), \quad \forall v \in \mathrm{H}_{0}^{2}(\Omega)
$$

- A conforming discretization is computationally expensive (C^{1} elements)
- HCT energy-error estimate [Ciarlet, 1974]: provided $u \in H^{4}(\Omega)$,

$$
\begin{gathered}
\left\|u-u_{h}\right\|_{H^{2}(\Omega)} \leqslant C h^{2}|u|_{H^{4}(\Omega)} \\
\Downarrow
\end{gathered}
$$

■ Goal: devising a new nonconforming numerical scheme, so as to improve the computational cost of the method

(2) Key ideas for HHO

3) Discrete setting

- Mesh
- Projectors on local polynomial spaces

4 The HHO method

- Local unknowns and interpolation
- Local deflection reconstruction
- Global problem
- Error estimates
- Numerical examples
- Discrete PVW \& Laws of action-reaction

5 Conclusions \& perspectives

Key ideas for HHO

■ Discrete unknowns

- Polynomials of order $k \geqslant 1$ on mesh cells and faces
- Cell-based unknowns can be eliminated by static condensation
- Building principles
- Reconstruction operator based on local primal Neumann problems
- Face-based penalty linking cell- and face-based unknowns

■ Main benefits

- Capability of handling general polygonal meshes
- High-order method: energy-error estimate of order $(k+1)$ and L^{2}-error estimate of order $(k+3)$ for smooth solutions
- Reproduction of key continuous mechanical properties at the discrete level

2. Key ideas for HHO
(3) Discrete setting

- Mesh
- Projectors on local polynomial spaces

4 The HHO method

- Local unknowns and interpolation
- Local deflection reconstruction
- Global problem
- Error estimates
- Numerical examples
- Discrete PVW \& Laws of action-reaction

5 Conclusions \& perspectives

Mesh

Mesh regularity

We consider a sequence $\left(\mathcal{T}_{h}\right)_{h \in \mathcal{H}}$ s.t., for all $h \in \mathcal{H}, \mathcal{T}_{h}$ admits a simplicial submesh \mathfrak{T}_{h}, and $\left(\mathfrak{T}_{h}\right)_{h \in \mathcal{H}}$ is

- shape-regular in the usual sense of Ciarlet
- contact-regular, i.e., every simplex $S \subset T$ is s.t. $h_{S} \approx h_{T}$

Mesh

Mesh regularity

We consider a sequence $\left(\mathcal{T}_{h}\right)_{h \in \mathcal{H}}$ s.t., for all $h \in \mathcal{H}, \mathcal{T}_{h}$ admits a simplicial submesh \mathfrak{T}_{h}, and $\left(\mathfrak{T}_{h}\right)_{h \in \mathcal{H}}$ is

- shape-regular in the usual sense of Ciarlet
- contact-regular, i.e., every simplex $S \subset T$ is s.t. $h_{S} \approx h_{T}$

Consequences [Di Pietro \& Ern, 2012;
Di Pietro \& Droniou, 2017]:

- L^{2}-trace and inverse inequalities
- Approximation for broken polynomial spaces

Hypothesis: the material tensor field \mathbb{A} is element-wise constant; we set

$$
\mathbb{A}_{\mathrm{T}}:=\mathbb{A}_{\mid \mathrm{T}} \quad \forall \mathrm{~T} \in \mathcal{T}_{\mathrm{h}}
$$

Projectors on local polynomial spaces

■ The L^{2}-orthogonal projector $\pi_{\mathrm{x}}^{\ell}: \mathrm{L}^{2}(\mathrm{X}) \rightarrow \mathbb{P}^{\mathfrak{l}}(\mathrm{X})$ is s.t.

$$
\left(\pi_{x}^{\ell} v-v, w\right)_{x}=0 \quad \forall w \in \mathbb{P}^{\ell}(X)
$$

Projectors on local polynomial spaces

■ The L^{2}-orthogonal projector $\pi_{\mathrm{X}}^{\ell}: \mathrm{L}^{2}(\mathrm{X}) \rightarrow \mathbb{P}^{\ell}(\mathrm{X})$ is s.t.

$$
\left(\pi_{x}^{\ell} v-v, w\right)_{X}=0 \quad \forall w \in \mathbb{P}^{\ell}(X)
$$

■ The local energy projector $\varpi_{T}^{\ell}: \mathrm{H}^{2}(\mathrm{~T}) \rightarrow \mathbb{P}^{\ell}(\mathrm{T})$, for $\ell \geqslant 2$, is s.t.

$$
\begin{aligned}
\left(\mathbb{A}_{\mathrm{T}} \nabla^{2}\left(\boldsymbol{\omega}_{\mathrm{T}}^{\ell} v-v\right), \nabla^{2} w\right)_{\mathrm{T}} & =0 \quad \forall w \in \mathbb{P}^{\ell}(\mathrm{T}), \\
\pi_{\mathrm{T}}^{1}\left(\boldsymbol{\omega}_{\mathrm{T}}^{\ell} v-v\right) & =0
\end{aligned}
$$

Projectors on local polynomial spaces

- The L^{2}-orthogonal projector $\pi_{\mathrm{X}}^{\ell}: \mathrm{L}^{2}(\mathrm{X}) \rightarrow \mathbb{P}^{\ell}(\mathrm{X})$ is s.t.

$$
\left(\pi_{x}^{\ell} v-v, w\right)_{X}=0 \quad \forall w \in \mathbb{P}^{\ell}(X)
$$

\square The local energy projector $\varpi_{T}^{\ell}: H^{2}(T) \rightarrow \mathbb{P}^{\ell}(T)$, for $\ell \geqslant 2$, is s.t.

$$
\begin{aligned}
\left(\mathbb{A}_{\mathrm{T}} \nabla^{2}\left(\propto_{\mathrm{T}}^{\ell} v-v\right), \nabla^{2} w\right)_{\mathrm{T}} & =0 \quad \forall w \in \mathbb{P}^{\ell}(\mathrm{T}), \\
\pi_{\mathrm{T}}^{1}\left(\propto_{\mathrm{T}}^{\ell} v-v\right) & =0
\end{aligned}
$$

- Both projectors have optimal approximation properties in $\mathrm{H}^{s}(\mathrm{~T})$

Theorem (Optimal approximation properties of $\varpi_{\mathrm{T}}^{\ell}$)

There is $C>0$ independent of h, but possibly depending on \mathbb{A}, s.t., for all $\mathrm{T} \in \mathcal{T}_{h}$, all $s \in\{2, \ldots, \ell+1\}$, and all $v \in \mathrm{H}^{s}(\mathrm{~T})$,

$$
\begin{array}{ll}
\left|v-\varpi_{\mathrm{T}}^{\ell} v\right|_{\mathrm{H}^{\mathrm{m}}(\mathrm{~T})} \leqslant \mathrm{Ch}_{\mathrm{T}}^{\mathrm{s}-\mathrm{m}}|v|_{\mathrm{H}^{\mathrm{s}}(\mathrm{~T})} & \forall \mathrm{m} \in\{0, \ldots, \mathrm{~s}-1\}, \\
\left|v-\varpi_{\mathrm{T}}^{\ell} v\right|_{\mathrm{H}^{\mathrm{m}}(\partial \mathrm{~T})} \leqslant \mathrm{Ch}_{\mathrm{T}}^{\mathrm{s}-\mathrm{m}-1 / 2}|v|_{\mathrm{H}^{\mathrm{s}}(\mathrm{~T})} & \forall \mathrm{m} \in\{0, \ldots, \mathrm{~s}-1\} .
\end{array}
$$

2. Key ideas for HHO
(3) Discrete setting

- Mesh
- Projectors on local polynomial spaces

4 The HHO method

- Local unknowns and interpolation
- Local deflection reconstruction
- Global problem
- Error estimates
- Numerical examples
- Discrete PVW \& Laws of action-reaction

5 Conclusions \& perspectives

Local unknowns and interpolation

Figure: \underline{U}_{T}^{k} for $k \in\{1,2\}$
For $k \geqslant 1$, and $T \in \mathcal{T}_{h}$, we define the local space of discrete unknowns

$$
\underline{U}_{T}^{k}:=\mathbb{P}^{k}(T) \times\left(\underset{F \in \mathcal{F}_{T}}{\times} \mathbb{P}^{k}(F)^{2}\right) \times\left(\underset{F \in \mathcal{F}_{T}}{\times} \mathbb{P}^{k}(F)\right)
$$

Local unknowns and interpolation

Figure: \underline{U}_{T}^{k} for $k \in\{1,2\}$
For $k \geqslant 1$, and $T \in \mathcal{T}_{h}$, we define the local space of discrete unknowns

$$
\underline{U}_{\mathrm{T}}^{\mathrm{k}}:=\mathbb{P}^{\mathrm{k}}(\mathrm{~T}) \times\left(\underset{\mathrm{F} \in \mathcal{F}_{\mathrm{T}}}{X} \mathbb{P}^{\mathrm{k}}(\mathrm{~F})^{2}\right) \times\left(\underset{\mathrm{F} \in \mathcal{F}_{\mathrm{T}}}{X} \mathbb{P}^{\mathrm{k}}(\mathrm{~F})\right)
$$

- The local interpolator $\underline{\mathrm{I}}_{\mathrm{T}}^{\mathrm{k}}: \mathrm{H}^{2}(\mathrm{~T}) \rightarrow \underline{\mathrm{U}}_{\mathrm{T}}^{\mathrm{k}}$ is s.t.

$$
\underline{\mathrm{I}}_{\mathrm{T}}^{\mathrm{k}} v:=\left(\pi_{\mathrm{T}}^{\mathrm{k}} v,\left(\pi_{\mathrm{F}}^{\mathrm{k}}\left((\boldsymbol{\nabla} v)_{\mid \mathrm{F}}\right)\right)_{\mathrm{F} \in \mathcal{F}_{\mathrm{T}}},\left(\pi_{\mathrm{F}}^{\mathrm{k}}\left(v_{\mid \mathrm{F}}\right)\right)_{\mathrm{F} \in \mathcal{F}_{\mathrm{T}}}\right)
$$

Local deflection reconstruction I

- We define the local deflection reconstruction $p_{T}^{k+2}: \underline{\mathrm{U}}_{\mathrm{T}}^{\mathrm{k}} \rightarrow \mathbb{P}^{\mathrm{k}+2}(\mathrm{~T})$ s.t.

$$
\begin{aligned}
&\left(\mathbb{A}_{\mathrm{T}} \nabla^{2} p_{\mathrm{T}}^{\mathrm{k}+2} \underline{v}_{\mathrm{T}}, \nabla^{2} w\right)_{\mathrm{T}}=\left(\mathbb{A}_{\mathrm{T}} \nabla^{2} v_{\mathrm{T}}, \nabla^{2} w\right)_{\mathrm{T}} \\
&+\sum_{\mathrm{F} \in \mathcal{F}_{\mathrm{T}}}\left(v_{\nabla, \mathrm{F}}-\nabla v_{\mathrm{T}},\left(\mathbb{A}_{\mathrm{T}} \nabla^{2} w\right) \mathfrak{n}_{\mathrm{TF}}\right)_{\mathrm{F}} \\
&-\sum_{\mathrm{F} \in \mathcal{F}_{\mathrm{T}}}\left(v_{\mathrm{F}}-v_{\mathrm{T}}, \operatorname{div} \mathbb{A}_{\mathrm{T}} \nabla^{2} w \cdot \mathbf{n}_{\mathrm{TF}}\right)_{\mathrm{F}} \\
& \text { for all } w \in \mathbb{P}^{\mathrm{k}+2}(\mathrm{~T})
\end{aligned}
$$

Local deflection reconstruction I

- We define the local deflection reconstruction $p_{T}^{k+2}: \underline{\mathrm{U}}_{\mathrm{T}}^{\mathrm{k}} \rightarrow \mathbb{P}^{\mathrm{k}+2}(\mathrm{~T})$ s.t.

$$
\begin{aligned}
\left(\mathbb{A}_{\mathrm{T}} \nabla^{2} p_{\mathrm{T}}^{\mathrm{k}+2} \underline{v}_{\mathrm{T}}, \nabla^{2} w\right)_{\mathrm{T}}= & \left(\mathbb{A}_{\mathrm{T}} \nabla^{2} v_{\mathrm{T}}, \nabla^{2} w\right)_{\mathrm{T}} \\
& +\sum_{\mathrm{F} \in \mathcal{F}_{\mathrm{T}}}\left(v_{\nabla, \mathrm{F}}-\nabla v_{\mathrm{T}},\left(\mathbb{A}_{\mathrm{T}} \nabla^{2} w\right) \mathfrak{n}_{\mathrm{TF}}\right)_{\mathrm{F}} \\
& -\sum_{\mathrm{F} \in \mathcal{F}_{\mathrm{T}}}\left(v_{\mathrm{F}}-v_{\mathrm{T}}, \operatorname{div} \mathbb{A}_{\mathrm{T}} \nabla^{2} w \cdot \mathbf{n}_{\mathrm{TF}}\right)_{\mathrm{F}}
\end{aligned}
$$

for all $w \in \mathbb{P}^{k+2}(\mathrm{~T})$, with closure condition

$$
\pi_{\mathrm{T}}^{1}\left(\mathrm{p}_{\mathrm{T}}^{\mathrm{k}+2} \underline{v}_{\mathrm{T}}-v_{\mathrm{T}}\right)=0
$$

Local deflection reconstruction I

■ We define the local deflection reconstruction $p_{T}^{k+2}: \underline{\mathrm{U}}_{\mathrm{T}}^{\mathrm{k}} \rightarrow \mathbb{P}^{\mathrm{k}+2}(\mathrm{~T})$ s.t.

$$
\begin{aligned}
\left(\mathbb{A}_{T} \nabla^{2} p_{T}^{k+2} \underline{v}_{T}, \nabla^{2} w\right)_{T}= & \left(\mathbb{A}_{T} \nabla^{2} v_{T}, \nabla^{2} w\right)_{T} \\
& +\sum_{\mathrm{F} \in \mathcal{F}_{\mathrm{T}}}\left(v_{\nabla, \mathrm{F}}-\nabla v_{\mathrm{T}},\left(\mathbb{A}_{\mathrm{T}} \nabla^{2} w\right) \mathfrak{n}_{\mathrm{TF}}\right)_{\mathrm{F}} \\
& -\sum_{\mathrm{F} \in \mathcal{F}_{\mathrm{T}}}\left(v_{\mathrm{F}}-v_{\mathrm{T}}, \operatorname{div} \mathbb{A}_{\mathrm{T}} \nabla^{2} w \cdot \mathbf{n}_{\mathrm{TF}}\right)_{\mathrm{F}}
\end{aligned}
$$

for all $w \in \mathbb{P}^{k+2}(\mathrm{~T})$, with closure condition

$$
\pi_{\mathrm{T}}^{1}\left(\mathrm{p}_{\mathrm{T}}^{\mathrm{k}+2} \underline{v}_{\mathrm{T}}-v_{\mathrm{T}}\right)=0
$$

- An integration by parts on the first term on the right-hand side yields

$$
\begin{aligned}
\left(\mathbb{A}_{\mathrm{T}} \nabla^{2} p_{\mathrm{T}}^{\mathrm{k}+2} \underline{v}_{\mathrm{T}}, \nabla^{2} w\right)_{\mathrm{T}}= & \left(v_{\mathrm{T}}, \operatorname{div} \operatorname{div} \mathbb{A}_{\mathrm{T}} \nabla^{2} w\right)_{\mathrm{T}} \\
& +\sum_{\mathrm{F} \in \mathcal{F}_{\mathrm{T}}}\left(v_{\nabla, \mathrm{F}},\left(\mathbb{A}_{\mathrm{T}} \nabla^{2} w\right) \mathfrak{n}_{\mathrm{TF}}\right)_{\mathrm{F}} \\
& -\sum_{\mathrm{F} \in \mathcal{F}_{\mathrm{T}}}\left(v_{\mathrm{F}}, \operatorname{div} \mathbb{A}_{\mathrm{T}} \nabla^{2} w \cdot \mathbf{n}_{\mathrm{TF}}\right)_{\mathrm{F}}
\end{aligned}
$$

Local deflection reconstruction II

- By the definition of \underline{I}_{T}^{k} it holds, for all $v \in \mathrm{H}^{2}(\mathrm{~T})$ and all $w \in \mathbb{P}^{k+2}(T)$,

$$
\begin{aligned}
\left(\mathbb{A}_{\mathrm{T}} \nabla^{2} p_{\mathrm{T}}^{\mathrm{k}+2} \underline{I}_{\mathrm{T}}^{\mathrm{k}} v, \nabla^{2} w\right)_{\mathrm{T}}= & \left(\pi_{\mathrm{T}}^{\mathrm{k}} v, \operatorname{div} \operatorname{div} \mathbb{A}_{\mathrm{T}} \nabla^{2} w\right)_{\mathrm{T}} \\
& +\sum_{\mathrm{F} \in \mathcal{F}_{\mathrm{T}}}\left(\pi_{\mathrm{F}}^{\mathrm{k}}(\nabla v),\left(\mathbb{A}_{\mathrm{T}} \nabla^{2} w\right) \mathbf{n}_{\mathrm{TF}}\right)_{\mathrm{F}} \\
& -\sum_{\mathrm{F} \in \mathcal{F}_{\mathrm{T}}}\left(\pi_{\mathrm{F}}^{\mathrm{k}} v, \operatorname{div} \mathbb{A}_{\mathrm{T}} \nabla^{2} w \cdot \mathbf{n}_{\mathrm{TF}}\right)_{\mathrm{F}}
\end{aligned}
$$

Local deflection reconstruction II

■ By the definition of \underline{I}_{T}^{k} it holds, for all $v \in \mathrm{H}^{2}(\mathrm{~T})$ and all $w \in \mathbb{P}^{k+2}(\mathrm{~T})$,

$$
\begin{aligned}
\left(\mathbb{A}_{\mathrm{T}} \nabla^{2} p_{\mathrm{T}}^{\mathrm{k}+2} \underline{I}_{\mathrm{T}}^{\mathrm{k}} v, \nabla^{2} w\right)_{\mathrm{T}}= & \left(\pi_{\mathrm{T}}^{k} v, \operatorname{div} \operatorname{div} \mathbb{A}_{\mathrm{T}} \nabla^{2} w\right)_{\mathrm{T}} \\
& +\sum_{\mathrm{F} \in \mathcal{F}_{\mathrm{T}}}\left(\pi_{\mathrm{F}}^{\mathrm{k}}(\nabla v),\left(\mathbb{A}_{\mathrm{T}} \nabla^{2} w\right) \mathbf{n}_{\mathrm{TF}}\right)_{\mathrm{F}} \\
& -\sum_{\mathrm{F} \in \mathcal{F}_{\mathrm{T}}}\left(\pi_{\mathrm{F}}^{\mathrm{k}} v, \operatorname{div} \mathbb{A}_{\mathrm{T}} \nabla^{2} w \cdot \mathbf{n}_{\mathrm{TF}}\right)_{\mathrm{F}}
\end{aligned}
$$

Local deflection reconstruction II

■ By the definition of \underline{I}_{T}^{k} it holds, for all $v \in H^{2}(T)$ and all $w \in \mathbb{P}^{k+2}(T)$,

$$
\begin{aligned}
\left(\mathbb{A}_{\mathrm{T}} \nabla^{2} p_{\mathrm{T}}^{k+2} \underline{I}_{\mathrm{T}}^{\mathrm{k}} v, \nabla^{2} w\right)_{\mathrm{T}}= & \left(\pi_{\mathrm{T}}^{\ell} v, \operatorname{div} \operatorname{div} \mathbb{A}_{\mathrm{T}} \nabla^{2} w\right)_{\mathrm{T}} \\
& +\sum_{\mathrm{F} \in \mathcal{F}_{\mathrm{T}}}\left(\pi_{\mathrm{F}}^{k}(\nabla v),\left(\mathbb{A}_{\mathrm{T}} \nabla^{2} w\right) \mathbf{n}_{\mathrm{TF}}\right)_{\mathrm{F}} \\
& -\sum_{\mathrm{F} \in \mathcal{F}_{\mathrm{T}}}\left(\pi_{\mathrm{F}}^{\mathrm{k}} v, \operatorname{div} \mathbb{A}_{\mathrm{T}} \nabla^{2} w \cdot \mathbf{n}_{\mathrm{TF}}\right)_{\mathrm{F}}
\end{aligned}
$$

Local deflection reconstruction II

■ By the definition of \underline{I}_{T}^{k} it holds, for all $v \in H^{2}(T)$ and all $w \in \mathbb{P}^{k+2}(T)$,

$$
\begin{aligned}
\left(\mathbb{A}_{\mathrm{T}} \nabla^{2} p_{\mathrm{T}}^{k+2} \underline{I}_{\mathrm{T}}^{k} v, \nabla^{2} w\right)_{\mathrm{T}}= & \left(\pi_{\mathrm{T}}^{\ell} v, \operatorname{div} \operatorname{div} \mathbb{A}_{\mathrm{T}} \nabla^{2} w\right)_{\mathrm{T}} \\
& +\sum_{\mathrm{F} \in \mathcal{F}_{\mathrm{T}}}\left(\pi_{\mathrm{F}}^{k}(\nabla v),\left(\mathbb{A}_{\mathrm{T}} \nabla^{2} w\right) \mathbf{n}_{\mathrm{TF}}\right)_{\mathrm{F}} \\
& -\sum_{\mathrm{F} \in \mathcal{F}_{\mathrm{T}}}\left(\pi_{\mathrm{F}}^{\chi} v, \operatorname{div} \mathbb{A}_{\mathrm{T}} \nabla^{2} w \cdot \mathbf{n}_{\mathrm{TF}}\right)_{\mathrm{F}}
\end{aligned}
$$

Local deflection reconstruction II

- By the definition of \underline{I}_{T}^{k} it holds, for all $v \in \mathrm{H}^{2}(\mathrm{~T})$ and all $w \in \mathbb{P}^{k+2}(\mathrm{~T})$,

$$
\begin{aligned}
& \left(\mathbb{A}_{T} \nabla^{2} p_{T}^{k+2}{ }_{-}^{k} v, \nabla^{2} w\right)_{T}=\left(X_{T}^{k} v, \operatorname{div} \operatorname{div} \mathbb{A}_{T} \nabla^{2} w\right)_{T} \\
& +\sum_{\mathrm{F} \in \mathcal{F}_{\mathrm{T}}}\left(\mathbb{Z}_{\mathrm{F}}^{k}(\nabla v),\left(\mathbb{A}_{\mathrm{T}} \nabla^{2} w\right) \mathbf{n}_{\mathrm{TF}}\right)_{\mathrm{F}} \\
& -\sum_{F \in \mathcal{F}_{T}}\left(\mathbb{Z}_{F}^{K} v, \operatorname{div} \mathbb{A}_{T} \nabla^{2} w \cdot \mathbf{n}_{T F}\right)_{F} \\
& =\left(\mathbb{A}_{T} \nabla^{2} v, \nabla^{2} w\right)_{T}
\end{aligned}
$$

Local deflection reconstruction II

■ By the definition of \underline{I}_{T}^{k} it holds, for all $v \in \mathrm{H}^{2}(\mathrm{~T})$ and all $w \in \mathbb{P}^{k+2}(\mathrm{~T})$,

$$
\begin{aligned}
& \left(\mathbb{A}_{T} \nabla^{2} p_{T}^{k+2}{ }_{-}^{k} \nu, \nabla^{2} w\right)_{T}=\left(\pi_{T}^{k} v, \operatorname{div} \operatorname{div} \mathbb{A}_{T} \nabla^{2} w\right)_{T} \\
& +\sum_{\mathrm{F} \in \mathcal{F}_{\mathrm{T}}}\left(\mathbb{Z}_{\mathrm{F}}^{K}(\nabla v),\left(\mathbb{A}_{\mathrm{T}} \nabla^{2} w\right) \mathbf{n}_{\mathrm{TF}}\right)_{\mathrm{F}} \\
& -\sum_{F \in \mathcal{F}_{T}}\left(\mathscr{Z}_{\mathrm{F}}^{K} v, \operatorname{div} \mathbb{A}_{\mathrm{T}} \nabla^{2} w \cdot \mathbf{n}_{\mathrm{TF}}\right)_{\mathrm{F}} \\
& =\left(\mathbb{A}_{\mathrm{T}} \boldsymbol{\nabla}^{2} v, \nabla^{2} w\right)_{\mathrm{T}}
\end{aligned}
$$

- As a result, for $v \in \mathrm{H}^{2}(\mathrm{~T})$,

$$
\begin{aligned}
\left(\mathbb{A}_{\mathrm{T}} \nabla^{2}\left(\mathrm{p}_{\mathrm{T}}^{\mathrm{k}+2} \underline{\underline{I}}_{-}^{k} v-v\right), \nabla^{2} w\right)_{\mathrm{T}} & =0 \quad \forall w \in \mathbb{P}^{k+2}(\mathrm{~T}), \\
\pi_{\mathrm{T}}^{1}\left(\mathrm{p}_{\mathrm{T}}^{\mathrm{k}+2} \underline{\underline{I}}_{\mathrm{T}}^{\mathrm{k}} v-v\right) & =0
\end{aligned}
$$

Local deflection reconstruction II

■ By the definition of \underline{I}_{T}^{k} it holds, for all $v \in \mathrm{H}^{2}(\mathrm{~T})$ and all $w \in \mathbb{P}^{k+2}(\mathrm{~T})$,

$$
\begin{aligned}
\left(\mathbb{A}_{T} \nabla^{2} p_{\mathrm{T}}^{\mathrm{k}+2} \underline{-}_{-}^{\mathrm{k}} v, \nabla^{2} w\right)_{\mathrm{T}}= & \left(\mathbb{X}_{\mathrm{T}}^{\chi} v, \operatorname{div} \operatorname{div} \mathbb{A}_{\mathrm{T}} \nabla^{2} w\right)_{\mathrm{T}} \\
& +\sum_{\mathrm{F} \in \mathcal{F}_{\mathrm{T}}}\left(\mathbb{X}_{\mathrm{F}}^{\chi}(\nabla v),\left(\mathbb{A}_{\mathrm{T}} \nabla^{2} w\right) \mathbf{n}_{\mathrm{TF}}\right)_{\mathrm{F}} \\
& -\sum_{\mathrm{F} \in \mathcal{F}_{\mathrm{T}}}\left(\mathbb{X}_{\mathrm{F}}^{\chi} v, \operatorname{div} \mathbb{A}_{\mathrm{T}} \nabla^{2} w \cdot \mathbf{n}_{\mathrm{TF}}\right)_{\mathrm{F}} \\
= & \left(\mathbb{A}_{\mathrm{T}} \nabla^{2} v, \nabla^{2} w\right)_{\mathrm{T}}
\end{aligned}
$$

- As a result, for $v \in \mathrm{H}^{2}(\mathrm{~T})$,

$$
\begin{gathered}
\left(\mathbb{A}_{\mathrm{T}} \nabla^{2}\left(p_{\mathrm{T}}^{k+2} \underline{\mathrm{I}}_{\mathrm{T}}^{\mathrm{k}} v-v\right), \nabla^{2} w\right)_{\mathrm{T}}=0 \quad \forall w \in \mathbb{P}^{k+2}(\mathrm{~T}), \\
\pi_{\mathrm{T}}^{1}\left(\mathrm{p}_{\mathrm{T}}^{\mathrm{k}+2} \underline{\mathrm{I}}_{\mathrm{T}}^{\mathrm{k}} v-v\right)=0 \\
\Downarrow \\
p_{\mathrm{T}}^{k+2} \circ \underline{I}_{T}^{k}=\varpi_{\mathrm{T}}^{k+2}
\end{gathered}
$$

- Thus, $\mathrm{p}_{\mathrm{T}}^{\mathrm{k}+2} \circ \underline{\mathrm{I}}_{\mathrm{T}}^{\mathrm{k}}$ has optimal H^{s}-approximation properties

Global problem I

■ For all $T \in \mathcal{T}_{h}$, we define the local bilinear form $\mathrm{a}_{\mathrm{T}}: \underline{\mathrm{U}}_{\mathrm{T}}^{\mathrm{k}} \times \underline{\mathrm{U}}_{\mathrm{T}}^{\mathrm{k}} \rightarrow \mathbb{R}$ by

$$
\mathrm{a}_{\mathrm{T}}\left(\underline{u}_{\mathrm{T}}, \underline{\mathrm{v}}_{\mathrm{T}}\right):=\left(\mathbb{A}_{\mathrm{T}} \nabla^{2} p_{\mathrm{T}}^{\mathrm{k}+2} \underline{u}_{\mathrm{T}}, \nabla^{2} \mathrm{p}_{\mathrm{T}}^{\mathrm{k}+2} \underline{\mathrm{v}}_{\mathrm{T}}\right)_{\mathrm{T}}+\mathrm{s}_{\mathrm{T}}\left(\underline{u}_{\mathrm{T}}, \underline{\mathrm{v}}_{\mathrm{T}}\right)
$$

Global problem I

- For all $\mathrm{T} \in \mathcal{T}_{h}$, we define the local bilinear form $\mathrm{a}_{\mathrm{T}}: \underline{\mathrm{U}}_{\mathrm{T}}^{\mathrm{k}} \times \underline{\mathrm{U}}_{\mathrm{T}}^{\mathrm{k}} \rightarrow \mathbb{R}$ by

$$
\mathrm{a}_{\mathrm{T}}\left(\underline{\mathrm{u}}_{\mathrm{T}}, \underline{\mathrm{v}}_{\mathrm{T}}\right):=\left(\mathbb{A}_{\mathrm{T}} \nabla^{2} p_{\mathrm{T}}^{\mathrm{k}+2} \underline{u}_{T}, \nabla^{2} p_{\mathrm{T}}^{\mathrm{k}+2} \underline{\mathrm{v}}_{\mathrm{T}}\right)_{\mathrm{T}}+\mathrm{s}_{\mathrm{T}}\left(\underline{u}_{\mathrm{T}}, \underline{\mathrm{v}}_{\mathrm{T}}\right)
$$

■ The stabilization term $\mathrm{s}_{\mathrm{T}}: \underline{\mathrm{U}}_{\mathrm{T}}^{\mathrm{k}} \times \underline{\mathrm{U}}_{\mathrm{T}}^{\mathrm{k}} \rightarrow \mathbb{R}$ is s.t.

$$
\begin{aligned}
\mathrm{s}_{\mathrm{T}}\left(\underline{\mathrm{u}}_{\mathrm{T}}, \underline{\mathrm{v}}_{\mathrm{T}}\right):= & \frac{\mathcal{A}_{\mathrm{T}}^{+}}{h_{\mathrm{T}}^{4}}\left(\pi_{\mathrm{T}}^{\mathrm{k}}\left(\mathrm{p}_{\mathrm{T}}^{\mathrm{k}+2} \underline{u}_{\mathrm{T}}-u_{\mathrm{T}}\right), \pi_{\mathrm{T}}^{\mathrm{k}}\left(\mathrm{p}_{\mathrm{T}}^{\mathrm{k}+2} \underline{v}_{\mathrm{T}}-v_{\mathrm{T}}\right)\right)_{\mathrm{T}} \\
& +\frac{\mathcal{A}_{\mathrm{T}}^{+}}{h_{\mathrm{T}}} \sum_{\mathrm{F} \in \mathcal{F}_{\mathrm{T}}}\left(\pi_{\mathrm{F}}^{\mathrm{k}}\left(\nabla p_{\mathrm{T}}^{\mathrm{k}+2} \underline{u}_{\mathrm{T}}-\mathbf{u}_{\nabla, \mathrm{F}}\right), \pi_{\mathrm{F}}^{\mathrm{k}}\left(\nabla \mathrm{p}_{\mathrm{T}}^{\mathrm{k}+2} \underline{v}_{\mathrm{T}}-v_{\nabla, \mathrm{F}}\right)\right)_{\mathrm{F}} \\
& +\frac{\mathcal{A}_{\mathrm{T}}^{+}}{\mathrm{h}_{\mathrm{T}}^{3}} \sum_{\mathrm{F} \in \mathcal{F}_{\mathrm{T}}}\left(\pi_{\mathrm{F}}^{\mathrm{k}}\left(p_{\mathrm{T}}^{\mathrm{k}+2} \underline{u}_{\mathrm{T}}-u_{\mathrm{F}}\right), \pi_{\mathrm{F}}^{\mathrm{k}}\left(p_{\mathrm{T}}^{\mathrm{k}+2} \underline{v}_{\mathrm{T}}-v_{\mathrm{F}}\right)\right)_{\mathrm{F}}
\end{aligned}
$$

Global problem I

- For all $\mathrm{T} \in \mathcal{T}_{h}$, we define the local bilinear form $\mathrm{a}_{\mathrm{T}}: \underline{\mathrm{U}}_{\mathrm{T}}^{\mathrm{k}} \times \underline{\mathrm{U}}_{\mathrm{T}}^{\mathrm{k}} \rightarrow \mathbb{R}$ by

$$
\mathrm{a}_{\mathrm{T}}\left(\underline{\mathrm{u}}_{\mathrm{T}}, \underline{\mathrm{v}}_{\mathrm{T}}\right):=\left(\mathbb{A}_{\mathrm{T}} \nabla^{2} \mathrm{p}_{\mathrm{T}}^{\mathrm{k}+2} \underline{u}_{\mathrm{T}}, \nabla^{2} \mathrm{p}_{\mathrm{T}}^{\mathrm{k}+2} \underline{\mathrm{v}}_{\mathrm{T}}\right)_{\mathrm{T}}+\mathrm{s}_{\mathrm{T}}\left(\underline{\mathrm{u}}_{\mathrm{T}}, \underline{\mathrm{v}}_{\mathrm{T}}\right)
$$

■ The stabilization term $\mathrm{s}_{\mathrm{T}}: \underline{\mathrm{U}}_{\mathrm{T}}^{\mathrm{k}} \times \underline{\mathrm{U}}_{\mathrm{T}}^{\mathrm{k}} \rightarrow \mathbb{R}$ is s.t.

$$
\begin{aligned}
\mathrm{s}_{\mathrm{T}}\left(\underline{\mathrm{u}}_{\mathrm{T}}, \underline{\mathrm{v}}_{\mathrm{T}}\right): & \frac{\mathcal{A}_{\mathrm{T}}^{+}}{\mathrm{h}_{\mathrm{T}}^{4}}\left(\pi_{\mathrm{T}}^{\mathrm{k}}\left(\mathrm{p}_{\mathrm{T}}^{\mathrm{k}+2} \underline{u}_{\mathrm{T}}-u_{\mathrm{T}}\right), \pi_{\mathrm{T}}^{\mathrm{k}}\left(\mathrm{p}_{\mathrm{T}}^{\mathrm{k}+2} \underline{v}_{\mathrm{T}}-v_{\mathrm{T}}\right)\right)_{\mathrm{T}} \\
& +\frac{\mathcal{A}_{\mathrm{T}}^{+}}{h_{\mathrm{T}}} \sum_{\mathrm{F} \in \mathcal{F}_{\mathrm{T}}}\left(\pi _ { \mathrm { F } } ^ { \mathrm { k } } \left(\nabla \mathrm{p}_{\mathrm{T}}^{\left.\left.\mathrm{k+2} \underline{u}_{\mathrm{T}}-u_{\nabla, \mathrm{F}}\right), \pi_{\mathrm{F}}^{\mathrm{k}}\left(\nabla \mathrm{p}_{\mathrm{T}}^{\mathrm{k}+2} \underline{v}_{\mathrm{T}}-v_{\nabla, \mathrm{F}}\right)\right)_{\mathrm{F}}}\right.\right. \\
& +\frac{\mathcal{A}_{\mathrm{T}}^{+}}{\mathrm{h}_{\mathrm{T}}^{3}} \sum_{\mathrm{F} \in \mathcal{F}_{\mathrm{T}}}\left(\pi_{\mathrm{F}}^{\mathrm{k}}\left(p_{\mathrm{T}}^{\mathrm{k}+2} \underline{u}_{\mathrm{T}}-u_{\mathrm{F}}\right), \pi_{\mathrm{F}}^{\mathrm{k}}\left(\mathrm{p}_{\mathrm{T}}^{\mathrm{k}+2} \underline{v}_{\mathrm{T}}-v_{\mathrm{F}}\right)\right)_{\mathrm{F}}
\end{aligned}
$$

\square Polynomial consistency: since $p_{T}^{k+2} \underline{I}_{T}^{k} v=\varpi_{T}^{k+2} v=v$ for all $v \in \mathbb{P}^{k+2}(\mathrm{~T})$,

$$
\mathrm{s}_{\mathrm{T}}\left(\underline{\mathrm{l}}_{\mathrm{T}}^{\mathrm{k}} v, \underline{\mathrm{w}}_{\mathrm{T}}\right)=0 \quad \forall \underline{\mathrm{w}}_{\mathrm{T}} \in \underline{\mathrm{U}}_{\mathrm{T}}^{\mathrm{k}}
$$

Global problem II

■ Define the following global space with single-valued interface unknowns:

$$
\underline{u}_{h}^{k}:=\left(\underset{T \in \mathcal{T}_{h}}{X} \mathbb{P}^{\mathrm{k}}(\mathrm{~T})\right) \times\left(\underset{\mathrm{F} \in \mathcal{F}_{h}}{X} \mathbb{P}^{\mathrm{k}}(\mathrm{~F})^{2}\right) \times\left(\underset{\mathrm{F} \in \mathcal{F}_{h}}{X} \mathbb{P}^{\mathrm{k}}(\mathrm{~F})\right)
$$

Global problem II

- Define the following global space with single-valued interface unknowns:

$$
\underline{U}_{h}^{k}:=\left(\underset{T \in \mathcal{T}_{h}}{X} \mathbb{P}^{k}(\mathrm{~T})\right) \times\left(\underset{\mathrm{F} \in \mathcal{F}_{h}}{X} \mathbb{P}^{\mathrm{k}}(\mathrm{~F})^{2}\right) \times\left(\underset{\mathrm{F} \in \mathcal{F}_{h}}{X} \mathbb{P}^{\mathrm{k}}(\mathrm{~F})\right)
$$

- A global bilinear form is assembled element-wise:

$$
a_{h}\left(\underline{u}_{h}, \underline{v}_{h}\right):=\sum_{\mathrm{T} \in \mathcal{T}_{h}} a_{\mathrm{T}}\left(\underline{u}_{\mathrm{T}}, \underline{\mathrm{v}}_{\mathrm{T}}\right)
$$

Global problem II

- Define the following global space with single-valued interface unknowns:

$$
{\underline{U_{n}^{k}}}_{k}^{k}=\left(\underset{T \in \mathcal{T}_{h}}{X} \mathbb{P}^{k}(T)\right) \times\left(\underset{F \in \mathcal{F}_{h}}{X} \mathbb{P}^{k}(F)^{2}\right) \times\left(\underset{F \in \mathcal{F}_{h}}{\times} \mathbb{P}^{k}(F)\right)
$$

- A global bilinear form is assembled element-wise:

$$
\mathrm{a}_{\mathrm{h}}\left(\underline{\mathrm{u}}_{\mathrm{h}}, \underline{\mathrm{v}}_{\mathrm{h}}\right):=\sum_{\mathrm{T} \in \mathcal{T}_{h}} \mathrm{a}_{\mathrm{T}}\left(\underline{\mathrm{u}}_{\mathrm{T}}, \underline{\mathrm{v}}_{\mathrm{T}}\right)
$$

Discrete problem

Find $\underline{u}_{h} \in \underline{U}_{h, 0}^{k}:=\left\{\underline{v}_{h} \in \underline{U}_{h}^{k}: v_{F}=0, v_{\nabla, F}=0\right.$ for any $\left.F \in \mathcal{F}_{h}^{b}\right\}$ s.t.

$$
\begin{gathered}
a_{h}\left(\underline{u}_{h}, \underline{v}_{h}\right)=\left(f, v_{h}\right) \\
\text { with } v_{h \mid T}=v_{T} \text { for all } T \in \mathcal{T}_{h}
\end{gathered}
$$

Global problem III

- Define on $\underline{\mathrm{U}}_{h, 0}^{\mathrm{k}}$ the following norm

$$
\begin{aligned}
\left\|\underline{v}_{h}\right\|_{\mathbb{A}, h}:=\sum_{T \in \mathcal{T}_{h}}(& \left(\left\|\mathbb{A}_{T}^{1 / 2} \nabla^{2} v_{T}\right\|_{T}^{2}+\frac{\mathcal{A}_{T}^{+}}{h_{T}} \sum_{F \in \mathcal{F}_{T}}\left\|v_{\nabla, F}-\nabla v_{T}\right\|_{F}^{2}\right. \\
& \left.+\frac{\mathcal{A}_{T}^{+}}{h_{T}^{3}} \sum_{\mathrm{F} \in \mathcal{F}_{T}}\left\|\boldsymbol{v}_{F}-v_{T}\right\|_{F}^{2}\right)^{1 / 2}
\end{aligned}
$$

Global problem III

- Define on $\underline{\mathrm{U}}_{h, 0}^{\mathrm{k}}$ the following norm

$$
\begin{aligned}
\left\|\underline{v}_{h}\right\|_{\mathbb{A}, h}:=\sum_{T \in \mathcal{T}_{h}}(& \left(\left\|\mathbb{A}_{T}^{1 / 2} \nabla^{2} v_{T}\right\|_{T}^{2}+\frac{\mathcal{A}_{T}^{+}}{h_{T}} \sum_{F \in \mathcal{F}_{T}}\left\|v_{\nabla, F}-\nabla v_{T}\right\|_{F}^{2}\right. \\
& \left.+\frac{\mathcal{A}_{T}^{+}}{h_{T}^{3}} \sum_{\mathrm{F} \in \mathcal{F}_{T}}\left\|\boldsymbol{v}_{F}-v_{T}\right\|_{F}^{2}\right)^{1 / 2}
\end{aligned}
$$

- The global bilinear form a_{h} is coercive and bounded:

$$
\left\|\underline{\mathrm{v}}_{\boldsymbol{h}}\right\|_{\mathbb{A}, \mathrm{h}}^{2} \lesssim \mathrm{a}_{\mathrm{h}}\left(\underline{\mathrm{v}}_{\mathrm{h}}, \underline{\mathrm{v}}_{\mathrm{h}}\right) \lesssim\left\|\underline{\mathrm{v}}_{\underline{h}}\right\|_{\mathbb{A}, \mathrm{h}}^{2} \quad \forall \underline{\mathrm{v}}_{\mathrm{h}} \in \underline{\mathrm{U}}_{\mathrm{h}, 0}^{\mathrm{k}}
$$

Global problem III

- Define on $\underline{\mathrm{U}}_{\mathrm{h}, 0}^{\mathrm{k}}$ the following norm

$$
\begin{aligned}
\left\|\underline{\mathrm{v}}_{\mathrm{h}}\right\|_{\mathbb{A}, h}:=\sum_{\mathrm{T} \in \mathcal{T}_{h}}(& \left\|\mathbb{A}_{\mathrm{T}}^{1 / 2} \nabla^{2} v_{\mathrm{T}}\right\|_{\mathrm{T}}^{2}+\frac{\mathcal{A}_{\mathrm{T}}^{+}}{\mathrm{h}_{\mathrm{T}}} \sum_{\mathrm{F} \in \mathcal{F}_{\mathrm{T}}}\left\|v_{\nabla, \mathrm{F}}-\nabla v_{\mathrm{T}}\right\|_{\mathrm{F}}^{2} \\
& \left.+\frac{\mathcal{A}_{\mathrm{T}}^{+}}{\mathrm{h}_{\mathrm{T}}^{3}} \sum_{\mathrm{F} \in \mathcal{F}_{\mathrm{T}}}\left\|v_{\mathrm{F}}-v_{\mathrm{T}}\right\|_{\mathrm{F}}^{2}\right)^{1 / 2}
\end{aligned}
$$

- The global bilinear form a_{h} is coercive and bounded:

$$
\left\|\underline{\mathrm{v}}_{\mathrm{h}}\right\|_{\mathbb{A}, \mathrm{h}}^{2} \lesssim \mathrm{a}_{\mathrm{h}}\left(\underline{\mathrm{v}}_{\mathrm{h}}, \underline{\mathrm{v}}_{\mathrm{h}}\right) \lesssim\left\|\underline{\mathrm{v}}_{\mathrm{h}}\right\|_{\mathbb{A}, \mathrm{h}}^{2} \quad \forall \underline{\mathrm{v}}_{\mathrm{h}} \in \underline{\mathrm{U}}_{\mathrm{h}, 0}^{\mathrm{k}}
$$

- The global bilinear form a_{h} is consistent: for all $v \in \mathrm{H}^{\mathrm{k}+3}(\Omega) \cap \mathrm{H}_{0}^{2}(\Omega)$,

$$
\sup _{\underline{w}_{h} \in \underline{U}_{h, 0}^{k} \backslash\left\{\underline{0}_{h}\right\}} \frac{\left(\operatorname{div} \operatorname{div} \mathbb{A} \nabla^{2} v, w_{h}\right)-a_{h}\left(\underline{l}_{h}^{k} v, \underline{w}_{h}\right)}{\left\|\underline{w}_{h}\right\|_{\mathbb{A}, h}} \lesssim h^{k+1}|v|_{H^{k+3}(\Omega)}
$$

Energy-error estimate

- Define the global deflection reconstruction $p_{h}^{k+2}: \underline{U}_{h}^{k} \rightarrow L^{2}(\Omega)$ s.t., for all $\underline{v}_{h} \in \underline{U}_{h}^{k}$,

$$
\left(p_{h}^{k+2} \underline{\mathbf{v}}_{h}\right)_{\mid T}=p_{T}^{k+2} \underline{\mathbf{v}}_{T} \quad \forall T \in \mathcal{T}_{h}
$$

- Define the following stabilization seminorm on $\underline{\mathrm{U}}_{\mathrm{h}}^{\mathrm{k}}$

$$
\left|\underline{\mathrm{v}}_{\mathrm{h}}\right|_{\mathrm{s}, \mathrm{~h}}^{2}:=\sum_{\mathrm{T} \in \mathcal{T}_{\mathrm{h}}} \mathrm{~s}_{\mathrm{T}}\left(\underline{\mathrm{v}}_{\mathrm{T}}, \underline{\mathrm{v}}_{\mathrm{T}}\right)
$$

Theorem (Energy-error estimate)

Let $u \in H_{0}^{2}(\Omega)$ and $\underline{u}_{h} \in \underline{U}_{h, 0}^{k}$. Assume the additional regularity $u \in H^{k+3}(\Omega)$. Then, there is $C>0$ depending on \mathbb{A}, but independent of h, s.t.

$$
\left\|\mathbb{A}^{1 / 2} \nabla_{h}^{2}\left(p_{h}^{k+2} \underline{u}_{h}-u\right)\right\|+\left|\underline{u}_{h}\right|_{s, h} \leqslant \mathrm{Ch}^{k+1}|u|_{H^{k+3}(\Omega)}
$$

Energy-error estimate

- Define the global deflection reconstruction $p_{h}^{k+2}: \underline{U}_{h}^{k} \rightarrow L^{2}(\Omega)$ s.t., for all $\underline{v}_{h} \in \underline{U}_{h}^{k}$,

$$
\left(p_{h}^{k+2} \underline{\mathrm{v}}_{\mathrm{h}}\right)_{\mid \mathrm{T}}=\mathrm{p}_{\mathrm{T}}^{\mathrm{k}+2} \underline{\mathrm{v}}_{\mathrm{T}} \quad \forall \mathrm{~T} \in \mathcal{T}_{\mathrm{h}}
$$

- Define the following stabilization seminorm on $\underline{\mathrm{U}}_{\mathrm{h}}^{\mathrm{k}}$

$$
\left|\underline{v}_{\mathrm{h}}\right|_{\mathrm{s}, \mathrm{~h}}^{2}:=\sum_{\mathrm{T} \in \mathcal{T}_{\mathrm{h}}} \mathrm{~s}_{\mathrm{T}}\left(\underline{\mathrm{v}}_{\mathrm{T}}, \underline{\mathrm{v}}_{\mathrm{T}}\right)
$$

Theorem (Energy-error estimate)

Let $u \in H_{0}^{2}(\Omega)$ and $\underline{u}_{h} \in \underline{U}_{h, 0}^{k}$. Assume the additional regularity $u \in H^{k+3}(\Omega)$. Then, there is $C>0$ depending on \mathbb{A}, but independent of h, s.t.

$$
\left\|\mathbb{A}^{1 / 2} \nabla_{h}^{2}\left(p_{h}^{k+2} \underline{u}_{h}-u\right)\right\|+\left|\underline{u}_{h}\right|_{s, h} \leqslant \mathrm{Ch}^{k+1}|\mathbf{u}|_{H^{k+3}(\Omega)} .
$$

- Choosing $\mathrm{k}=1$ we recover the HCT error estimate

L^{2}-error estimate

- To infer a sharp L^{2}-error estimate, we assume biharmonic regularity:

For all $\mathrm{q} \in \mathrm{L}^{2}(\Omega)$, the solution $z \in \mathrm{H}_{0}^{2}(\Omega)$ to

$$
\left(\mathbb{A} \nabla^{2} z, \nabla^{2} v\right)=(\mathrm{q}, v) \quad \forall v \in \mathrm{H}_{0}^{2}(\Omega)
$$

satisfies the a priori estimate

$$
\|z\|_{H^{4}(\Omega)} \leqslant C_{\text {bihar }}\|q\|,
$$

with $\mathrm{C}_{\text {bihar }}>0$ only depending on Ω

L^{2}-error estimate

- To infer a $\operatorname{sharp} \mathrm{L}^{2}$-error estimate, we assume biharmonic regularity:

For all $\mathrm{q} \in \mathrm{L}^{2}(\Omega)$, the solution $z \in \mathrm{H}_{0}^{2}(\Omega)$ to

$$
\left(\mathbb{A} \nabla^{2} z, \nabla^{2} v\right)=(q, v) \quad \forall v \in H_{0}^{2}(\Omega)
$$

satisfies the a priori estimate

$$
\|z\|_{H^{4}(\Omega)} \leqslant C_{\text {bihar }}\|q\|,
$$

with $\mathrm{C}_{\text {bihar }}>0$ only depending on Ω

Theorem (L^{2}-error estimate)

Let $u \in H_{0}^{2}(\Omega)$ and $\underline{u}_{h} \in \underline{U}_{h, 0}^{k}$. Assume biharmonic regularity, $f \in H^{k+1}\left(\mathcal{T}_{h}\right)$, and $u \in H^{k+3}(\Omega)$. Then, there is $C>0$ depending on \mathbb{A}, but independent of h, s.t.

$$
\left\|\mathfrak{p}_{h}^{k+2} \underline{u}_{h}-\mathfrak{u}\right\| \leqslant \mathrm{Ch}^{k+3}\left(\|\mathfrak{u}\|_{H^{k+3}(\Omega)}+\|f\|_{H^{k+1}\left(\mathcal{T}_{h}\right)}\right) .
$$

Numerical examples I

- We solve the biharmonic equation on $\Omega=(0,1) \times(0,1)$, for

$$
u(x, y)=x^{2}(1-x)^{2} y^{2}(1-y)^{2}
$$

$$
\rightarrow k=1 \quad \rightarrow k=2 \quad \longrightarrow k=3
$$

(a) Triangular

(b) Cartesian

(c) Hexagonal

Figure: Energy error vs. meshsize for three different meshes

Numerical examples II

- We solve the biharmonic equation on $\Omega=(0,1) \times(0,1)$, for

$$
u(x, y)=x^{2}(1-x)^{2} y^{2}(1-y)^{2}
$$

$$
\longrightarrow-k=1 \quad \longrightarrow k=2 \quad \longrightarrow k=3
$$

(a) Triangular

(b) Cartesian

(c) Hexagonal

Figure: L^{2}-error vs. meshsize for three different meshes

Discrete PVW \& Laws of action-reaction I

\square Let $T \in \mathcal{T}_{h}$ be fixed, and $M_{T}:=-\mathbb{A}_{T} \nabla^{2} u$

Discrete PVW \& Laws of action-reaction I

\square Let $T \in \mathcal{T}_{h}$ be fixed, and $M_{T}:=-\mathbb{A}_{T} \nabla^{2} u$

- At the continuous level
- The principle of virtual work holds:

$$
\begin{array}{r}
\text { For all } v \in \mathbb{P}^{\mathrm{k}}(\mathrm{~T}), \\
-\left(\boldsymbol{M}_{\mathrm{T}}, \nabla^{2} v\right)_{\mathrm{T}}+\sum_{\mathrm{F} \in \mathcal{F}_{\mathrm{T}}}\left(\mathbf{M}_{\mathrm{T}} \mathbf{n}_{\mathrm{TF}}, \nabla v\right)_{\mathrm{F}}-\sum_{\mathrm{F} \in \mathcal{F}_{\mathrm{T}}}\left(\operatorname{div} \boldsymbol{M}_{\mathrm{T}} \cdot \mathbf{n}_{\mathrm{TF}}, v\right)_{\mathrm{F}}=(\mathrm{f}, v)_{\mathrm{T}}
\end{array}
$$

- The following laws of action-reaction hold, for $F \in \mathcal{F}_{\mathrm{T}_{1}} \cap \mathcal{F}_{\mathrm{T}_{2}}$:

$$
\mathbf{M}_{\mathrm{T}_{1}} \mathbf{n}_{\mathrm{T}_{1} \mathrm{~F}}+\mathbf{M}_{\mathrm{T}_{2}} \mathbf{n}_{\mathrm{T}_{2} \mathrm{~F}}=0, \quad \operatorname{div} \mathbf{M}_{\mathrm{T}_{1}} \cdot \mathbf{n}_{\mathrm{T}_{1} \mathrm{~F}}+\operatorname{div} \mathbf{M}_{\mathrm{T}_{2}} \cdot \mathbf{n}_{\mathrm{T}_{2} \mathrm{~F}}=0
$$

Discrete PVW \& Laws of action-reaction I

\square Let $T \in \mathcal{T}_{h}$ be fixed, and $M_{T}:=-\mathbb{A}_{T} \nabla^{2} u$

- At the continuous level
- The principle of virtual work holds:

$$
\begin{gathered}
\text { For all } v \in \mathbb{P}^{\mathrm{k}}(\mathrm{~T}), \\
-\left(\boldsymbol{M}_{\mathrm{T}}, \nabla^{2} v\right)_{\mathrm{T}}+\sum_{\mathrm{F} \in \mathcal{F}_{\mathrm{T}}}\left(\mathbf{M}_{\mathrm{T}} \mathbf{n}_{\mathrm{TF}}, \nabla v\right)_{\mathrm{F}}-\sum_{\mathrm{F} \in \mathcal{F}_{\mathrm{T}}}\left(\operatorname{div} \boldsymbol{M}_{\mathrm{T}} \cdot \mathbf{n}_{\mathrm{TF}}, v\right)_{\mathrm{F}}=(\mathrm{f}, v)_{\mathrm{T}}
\end{gathered}
$$

- The following laws of action-reaction hold, for $F \in \mathcal{F}_{T_{1}} \cap \mathcal{F}_{T_{2}}$:

$$
\mathbf{M}_{\mathrm{T}_{1}} \mathbf{n}_{\mathrm{T}_{1} \mathrm{~F}}+\mathbf{M}_{\mathrm{T}_{2}} \mathbf{n}_{\mathrm{T}_{2} \mathrm{~F}}=0, \quad \operatorname{div} \mathbf{M}_{\mathrm{T}_{1}} \cdot \mathbf{n}_{\mathrm{T}_{1} \mathrm{~F}}+\operatorname{div} \mathbf{M}_{\mathrm{T}_{2}} \cdot \mathbf{n}_{\mathrm{T}_{2} \mathrm{~F}}=0
$$

- The solution to the discrete problem satisfies discrete counterparts of the above statements

Discrete PVW \& Laws of action-reaction II

- Define the space

$$
\underline{\mathrm{D}}_{\partial \mathrm{T}}^{\mathrm{k}}:=\left(\underset{\mathrm{F} \in \mathcal{F}_{\mathrm{T}}}{X} \mathbb{P}^{\mathrm{k}}(\mathrm{~F})^{2}\right) \times\left(\underset{\mathrm{F} \in \mathcal{F}_{\mathrm{T}}}{X} \mathbb{P}^{\mathrm{k}}(\mathrm{~F})\right)
$$

and the boundary difference operator $\underline{\delta}_{\partial T}^{k}: \underline{U}_{T}^{k} \rightarrow \underline{D}_{\partial T}^{k}$ s.t., for all $\underline{v}_{T} \in \underline{U}_{T}^{k}$,

$$
\begin{aligned}
\underline{\delta}_{\partial \mathrm{T} \underline{\mathrm{~V}}_{\mathrm{T}}}^{\mathrm{k}} & \equiv\left(\left(\boldsymbol{\delta}_{\left.\left.\nabla, \mathrm{F} \underline{\mathrm{~V}} T^{\mathrm{k}}\right)_{\mathrm{F} \in \mathcal{F}_{\mathrm{T}}},\left(\delta_{\mathrm{F}}^{\mathrm{V}} \underline{\mathrm{~V}} \mathrm{~T}\right)_{\mathrm{F} \in \mathcal{F}_{\mathrm{T}}}\right)}\right.\right. \\
& :=\left(\left(\boldsymbol{v}_{\nabla, \mathrm{F}}-\boldsymbol{\nabla} v_{\mathrm{T}}\right)_{\mathrm{F} \in \mathcal{F}_{\mathrm{T}}},\left(v_{\mathrm{F}}-v_{\mathrm{T}}\right)_{\mathrm{F} \in \mathcal{F}_{\mathrm{T}}}\right)
\end{aligned}
$$

Discrete PVW \& Laws of action-reaction II

- Define the space

$$
\underline{\mathrm{D}}_{\partial \mathrm{T}}^{\mathrm{k}}:=\left(\underset{\mathrm{F} \in \mathcal{F}_{\mathrm{T}}}{X} \mathbb{P}^{\mathrm{k}}(\mathrm{~F})^{2}\right) \times\left(\underset{\mathrm{F} \in \mathcal{F}_{\mathrm{T}}}{X} \mathbb{P}^{\mathrm{k}}(\mathrm{~F})\right)
$$

and the boundary difference operator $\underline{\delta}_{\partial T}^{k}: \underline{U}_{T}^{k} \rightarrow \underline{D}_{\partial T}^{k}$ s.t., for all $\underline{v}_{T} \in \underline{U}_{T}^{k}$,

$$
\begin{aligned}
\underline{\delta}_{\partial T}^{k} \underline{v}_{T} & \equiv\left(\left(\boldsymbol{\delta}_{\nabla, \mathrm{F} T}^{k}\right)_{\mathrm{F} \in \mathcal{F}_{\mathrm{T}}},\left(\boldsymbol{\delta}_{\mathrm{F} \underline{\mathrm{~V}}_{T}}^{\mathrm{k}}\right)_{\mathrm{F} \in \mathcal{F}_{\mathrm{T}}}\right) \\
& :=\left(\left(\boldsymbol{v}_{\nabla, \mathrm{F}}-\boldsymbol{\nabla} v_{\mathrm{T}}\right)_{\mathrm{F} \in \mathcal{F}_{\mathrm{T}}},\left(v_{\mathrm{F}}-v_{\mathrm{T}}\right)_{\mathrm{F} \in \mathcal{F}_{\mathrm{T}}}\right)
\end{aligned}
$$

- Define now the residual operator

$$
\underline{R}_{\partial T}^{k} \equiv\left(\left(\mathbf{R}_{\nabla, \mathrm{F}}^{\mathrm{k}}\right)_{\mathrm{F} \in \mathcal{F}_{\mathrm{T}}},\left(\mathrm{R}_{\mathrm{F}}^{\mathrm{k}}\right)_{\mathrm{F} \in \mathcal{F}_{\mathrm{T}}}\right): \underline{\mathrm{U}}_{\mathrm{T}}^{\mathrm{k}} \rightarrow \underline{\mathrm{D}}_{\partial \mathrm{T}}^{\mathrm{k}}
$$

s.t., for all $\underline{v}_{T} \in \underline{U}_{T}^{k}$ and all $\underline{\alpha}_{\partial T} \equiv\left(\left(\boldsymbol{\alpha}_{\nabla, F}\right)_{F \in \mathcal{F}_{T}},\left(\alpha_{F}\right)_{F \in \mathcal{F}_{T}}\right) \in \underline{D}_{\partial T}^{k}$,

$$
\begin{aligned}
\left(\underline{R}_{\partial T}^{k} \underline{\mathrm{~V}}_{T}, \underline{\alpha}_{\partial T}\right)_{0, \partial T} & \equiv \sum_{F \in \mathcal{F}_{T}}\left(\left(\mathbf{R}_{\nabla, F}^{k} \underline{\mathrm{~V}}_{T}, \alpha_{\nabla, F}\right)_{F}+\left(\mathrm{R}_{\mathrm{F}}^{\mathrm{k}} \underline{\mathrm{~V}}_{T}, \alpha_{F}\right)_{F}\right) \\
& =\mathrm{s}_{T}\left(\left(0, \underline{\delta}_{\partial T}^{k} \underline{\mathrm{~V}} T^{k}\right),\left(0, \underline{\alpha}_{\partial T}\right)\right)
\end{aligned}
$$

Discrete PVW \& Laws of action-reaction III

Lemma (Local principle of virtual work and laws of action-reaction)

Let $\underline{u}_{h} \in \underline{U}_{h, 0}^{k}$ be the unique solution to the discrete problem and, for all $T \in \mathcal{T}_{h}$ and all $F \in \mathcal{F}_{\mathrm{T}}$, define the discrete moment and shear force

$$
\begin{aligned}
& \mathcal{M}_{\mathrm{TF}}^{\mathrm{k}}\left(\underline{\mathrm{u}}_{\mathrm{T}}\right):=-\left(\left(\mathbb{A} \boldsymbol{\nabla}^{2} p_{\mathrm{T}}^{\mathrm{k}+2} \underline{u}_{\mathrm{T}}\right) \mathbf{n}_{\mathrm{TF}}+\mathbf{R}_{\boldsymbol{\nabla}, \mathrm{F}}^{\mathrm{k}} \underline{\mathrm{u}}_{\mathrm{T}}\right) \text {, } \\
& \mathcal{S}_{\mathrm{TF}}^{\mathrm{k}}\left(\underline{\mathrm{u}}_{\mathrm{T}}\right):=-\operatorname{div} \mathbb{A} \boldsymbol{\nabla}^{2} \mathrm{p}_{\mathrm{T}}^{\mathrm{k}+2} \underline{\mathrm{u}}_{\mathrm{T}} \cdot \mathbf{n}_{\mathrm{TF}}+\mathrm{R}_{\mathrm{F}}^{\mathrm{k}} \underline{\underline{u}}_{\mathrm{T}} .
\end{aligned}
$$

Then, the following discrete counterparts of PVW and laws of action-reaction hold, respectively:

For any mesh element $T \in \mathcal{T}_{h}$, and for all $\nu_{T} \in \mathbb{P}^{k}(T)$,

$$
\left(\mathbb{A}_{T} \nabla^{2} p_{T}^{k+2} \underline{u}_{T}, v_{T}\right)_{T}+\sum_{\mathrm{F} \in \mathcal{F}_{\mathrm{T}}}\left(\mathcal{M}_{\mathrm{TF}}^{\mathrm{k}}\left(\underline{\mathrm{u}}_{\mathrm{T}}\right), \nabla v_{\mathrm{T}}\right)_{\mathrm{F}}-\sum_{\mathrm{F} \in \mathcal{F}_{\mathrm{T}}}\left(\mathcal{S}_{\mathrm{TF}}^{\mathrm{k}}\left(\underline{\mathrm{u}}_{\mathrm{T}}\right), v_{\mathrm{T}}\right)_{\mathrm{F}}=\left(\mathrm{f}, v_{\mathrm{T}}\right)_{\mathrm{T}} ;
$$

For any interface $F \in \mathcal{F}_{\mathrm{T}_{1}} \cap \mathcal{F}_{\mathrm{T}_{2}}$,

$$
\mathcal{M}_{\mathrm{T}_{1} \mathrm{~F}}^{\mathrm{k}}\left(\underline{\mathrm{u}}_{\mathrm{T}_{1}}\right)+\mathcal{M}_{\mathrm{T}_{2} \mathrm{~F}}^{\mathrm{k}}\left(\underline{\mathrm{u}}_{\mathrm{T}_{2}}\right)=0, \quad \mathcal{S}_{\mathrm{T}_{1} \mathrm{~F}}^{\mathrm{k}}\left(\underline{\mathrm{u}}_{\mathrm{T}_{1}}\right)+\mathcal{S}_{\mathrm{T}_{2} \mathrm{~F}}^{\mathrm{k}}\left(\underline{\mathrm{u}}_{\mathrm{T}_{2}}\right)=0 .
$$

2) Key ideas for HHO
(3) Discrete setting

- Mesh
- Projectors on local polynomial spaces

4 The HHO method

- Local unknowns and interpolation
- Local deflection reconstruction
- Global problem
- Error estimates
- Numerical examples
- Discrete PVW \& Laws of action-reaction
(5) Conclusions \& perspectives

Conclusions \& perspectives

Conclusions

- We presented a new nonconforming method based on a primal formulation
- Choosing $k=1$ is enough to get a quadratic energy error and a quartic L^{2}-error
- Mechanical equilibrium principles are reproduced at the discrete level

Conclusions \& perspectives

Conclusions

- We presented a new nonconforming method based on a primal formulation
- Choosing $k=1$ is enough to get a quadratic energy error and a quartic L^{2}-error
- Mechanical equilibrium principles are reproduced at the discrete level

Perspectives

Consider the case of simply supported plates:

$$
\mathbf{u}=0 \quad \text { and } \quad\left(\mathbb{A} \boldsymbol{\nabla}^{2} \mathbf{u}\right) \mathbf{n} \cdot \mathbf{n}=0 \quad \text { on } \partial \Omega
$$

- Consider a variant based on a dual formulation
- Couple the method with a time discretization to treat dynamics of plates

References

F. Bonaldi, D. A. Di Pietro, G. Geymonat, and F. Krasucki.

A Hybrid High-Order method for Kirchhoff-Love plate bending problems.
Preprint arXiv:1706.06781 [math.NA], 2017.
D. A. Di Pietro and J. Droniou.
$W^{s, p}$-approximation properties of elliptic projectors on polynomial spaces, with application to the error analysis of a Hybrid High-Order discretisation of Leray-Lions problems.
Math. Models Methods Appl. Sci., 27(5):879-908, 2017.
D. A. Di Pietro and A. Ern.

A hybrid high-order locking-free method for linear elasticity on general meshes.
Comput. Meth. Appl. Mech. Engrg., 283:1-21, 2015.
D. A. Di Pietro and R. Tittarelli.

Numerical methods for PDEs. Lectures from the fall 2016 thematic quarter at Institut Henri Poincaré, chapter An introduction to Hybrid High-Order methods.
SEMA SIMAI series. Springer, 2017.
Accepted for publication. Preprint arXiv:1703.05136 [math.NA].

