A Hybrid High-Order method for Kirchhoff-Love plate bending problems

Francesco Bonaldi

joint work with D. A. Di Pietro, G. Geymonat, and F. Krasucki

MAFELAP 2019

June 20, 2019

Motivations

- Let $\Omega \subset \mathbb{R}^{2}$ be an open, bounded, connected polygonal 2D domain

Kirchhoff-Love clamped plate problem

For $f \in L^{2}(\Omega)$, find $u \in H_{0}^{2}(\Omega)$ such that

$$
\left(\mathbb{A} \boldsymbol{\nabla}^{2} u, \nabla^{2} v\right)=(f, v) \forall v \in H_{0}^{2}(\Omega)
$$

- Standard conforming discretizations are computationally expensive (C^{1} elements)
■ HCT energy-error estimate [Ciarlet, 1974]: provided $u \in H^{4}(\Omega)$,

$$
\begin{gathered}
\left\|u-u_{h}\right\|_{H^{2}(\Omega)} \leqslant C h^{2}|u|_{H^{4}(\Omega)} \\
\Downarrow
\end{gathered}
$$

■ Goal: devising a nonconforming numerical scheme, so as to improve the computational cost of the method
\& [B., Di Pietro, Geymonat, Krasucki, M2AN 2018]

Numerical methods for KL plates - state of the art

■ [Johnson, 1973]: convergence of mixed FEM
■ [Lascaux-Lesaint, 1975]: convergence of FEM on nonconforming elements
■ [Baker, 1977]: first discontinuous element approach

- [Brezzi-Fortin, 1991]: mixed FEM, first-order equations
- [Amara-Capatina-Chatti, 2002]: mixed FEM, Tartar's lemma

■ [Mozolevski-Süli, 2003]: nonsymmetric $h p$-Discontinuous Galerkin
■ [Georgoulis-Houston, 2008]: $h p$-Discontinuous Galerkin, unified approach
■ [Cockburn-Dong-Guzmán, 2009]: Hybridizable Discontinuous Galerkin

- [Brenner, 2010]: C^{0} interior penalty

■ [Behrens-Guzmán, 2011]: mixed FEM, first-order equations
■ [Brezzi-Marini, 2013]: Virtual Element Methods
■ [Mu-Wang-Ye, 2014]: Weak Galerkin
■ [Chinosi-Marini, 2016]: VEM, L^{2}-estimates
■ [Zhao-Chen-Zang, 2016]: nonconforming VEM
■ [Antonietti-Manzini-Verani, 2017]: fully nonconforming VEM, nodal unknowns
■ [B.-DiPietro-Geymonat-Krasucki, 2018]: Hybrid High-Order, primal
■ [Dong, 2018]: $h p$-Discontinuous Galerkin method on polytopal grids

Key ideas for HHO

- Discrete unknowns
- Polynomials of order $k \geqslant 1$ on mesh cells and faces
- Cell-based unknowns can be eliminated by static condensation
- Building principles
- Reconstruction operator based on local primal Neumann problems
- Face-based penalty linking cell- and face-based unknowns
- Main benefits
- Capability of handling general polygonal meshes
- High-order method: energy-error estimate of order $(k+1)$, L^{2}-error estimate of order $(k+3)$ for smooth solutions
- Key continuous mechanical properties reproduced at the discrete level

Mesh

Mesh regularity

We consider a sequence $\left(\mathcal{T}_{h}\right)_{h \in \mathcal{H}}$ s.t., for all $h \in \mathcal{H}, \mathcal{T}_{h}$ admits a simplicial submesh \mathfrak{T}_{h}, and $\left(\mathfrak{T}_{h}\right)_{h \in \mathcal{H}}$ is

- shape-regular in the usual sense of Ciarlet
- contact-regular, i.e., every simplex $S \subset T$ is s.t. $h_{S} \approx h_{T}$

Consequences [Di Pietro \& Ern, 2012; Di Pietro \& Droniou, 2017]:

- L^{2}-trace and inverse inequalities
- Approximation for broken polynomial spaces

Hypothesis: the material tensor field \mathbb{A} is element-wise constant; we set

$$
\mathbb{A}_{T}:=\mathbb{A}_{\mid T} \quad \forall T \in \mathcal{T}_{h}
$$

Projectors on local polynomial spaces

Let $X \in \mathcal{T}_{h} \cup \mathcal{F}_{h}$ be a mesh cell or face.
■ The L^{2}-orthogonal projector $\pi_{X}^{\ell}: L^{2}(X) \rightarrow \mathbb{P}^{\ell}(X)$ is s.t.

$$
\left(\pi_{X}^{\ell} v-v, w\right)_{X}=0 \quad \forall w \in \mathbb{P}^{\ell}(X)
$$

■ The local energy projector $\varpi_{T}^{\ell}: H^{2}(T) \rightarrow \mathbb{P}^{\ell}(T)$, for $\ell \geqslant 2$, is s.t.

$$
\begin{aligned}
\left(\mathbb{A}_{T} \boldsymbol{\nabla}^{2}\left(\varpi_{T}^{\ell} v-v\right), \boldsymbol{\nabla}^{2} w\right)_{T} & =0 \quad \forall w \in \mathbb{P}^{\ell}(T), \\
\pi_{T}^{1}\left(\varpi_{T}^{\ell} v-v\right) & =0
\end{aligned}
$$

- Both projectors have optimal approximation properties in $H^{s}(T)$

Theorem (Optimal approximation properties of ϖ_{T}^{ℓ})

There is $C>0$ independent of h, but possibly depending on \mathbb{A}, s.t., for all $T \in \mathcal{T}_{h}$, all $s \in\{2, \ldots, \ell+1\}$, and all $v \in H^{s}(T)$,

$$
\begin{aligned}
\left|v-\varpi_{T}^{\ell} v\right|_{H^{m}(T)} \leqslant C h_{T}^{s-m}|v|_{H^{s}(T)} & & \forall m \in\{0, \ldots, s-1\}, \\
\left|v-\varpi_{T}^{\ell} v\right|_{H^{m}(\partial T)} \leqslant C h_{T}^{s-m-1 / 2}|v|_{H^{s}(T)} & & \forall m \in\{0, \ldots, s-1\}
\end{aligned}
$$

Local unknowns and interpolation

Figure: $\underline{\mathrm{U}}_{T}^{k}$ for $k \in\{1,2\}$
■ For $k \geqslant 1$, and $T \in \mathcal{T}_{h}$, we define the local space of discrete unknowns

$$
\begin{gathered}
\underline{\mathrm{U}}_{T}^{k}:=\mathbb{P}^{k}(T) \times\left(\underset{F \in \mathcal{F}_{T}}{X} \mathbb{P}^{k}(F)^{2}\right) \times\left(\underset{F \in \mathcal{F}_{T}}{X} \mathbb{P}^{k}(F)\right) \\
\underline{\mathrm{u}}_{T} \equiv\left(u_{T},\left(\boldsymbol{v}_{\nabla, F}\right)_{F \in \mathcal{F}_{T}},\left(v_{F}\right)_{F \in \mathcal{F}_{T}}\right)
\end{gathered}
$$

■ The local interpolator $\underline{\mathrm{I}}_{T}^{k}: H^{2}(T) \rightarrow \underline{\mathrm{U}}_{T}^{k}$ is s.t.

$$
\underline{\mathrm{I}}_{T}^{k} v:=\left(\pi_{T}^{k} v,\left(\boldsymbol{\pi}_{F}^{k}\left((\boldsymbol{\nabla} v)_{\mid F}\right)\right)_{F \in \mathcal{F}_{T}},\left(\pi_{F}^{k}\left(v_{\mid F}\right)\right)_{F \in \mathcal{F}_{T}}\right)
$$

Local deflection reconstruction I

■ The local deflection reconstruction $r_{T}^{k+2}: \underline{\mathrm{U}}_{T}^{k} \rightarrow \mathbb{P}^{k+2}(T)$ is s.t.

$$
\begin{aligned}
&\left(\mathbb{A}_{T} \boldsymbol{\nabla}^{2} r_{T}^{k+2} \underline{\mathrm{v}}_{T}, \boldsymbol{\nabla}^{2} w\right)_{T}=\left(v_{T}, \operatorname{div} \operatorname{div} \mathbb{A}_{T} \boldsymbol{\nabla}^{2} w\right)_{T} \\
&+\sum_{F \in \mathcal{F}_{T}}\left(\boldsymbol{v}_{\boldsymbol{\nabla}, F},\left(\mathbb{A}_{T} \boldsymbol{\nabla}^{2} w\right) \boldsymbol{n}_{T F}\right)_{F} \\
&-\sum_{F \in \mathcal{F}_{T}}\left(v_{F}, \operatorname{div} \mathbb{A}_{T} \boldsymbol{\nabla}^{2} w \cdot \boldsymbol{n}_{T F}\right)_{F} \\
& \text { for all } w \in \mathbb{P}^{k+2}(T), \text { with closure condition } \\
& \pi_{T}^{1}\left(r_{T}^{k+2} \underline{\mathrm{v}}_{T}-v_{T}\right)=0
\end{aligned}
$$

Local deflection reconstruction I

- The local deflection reconstruction $r_{T}^{k+2}: \underline{\mathrm{U}}_{T}^{k} \rightarrow \mathbb{P}^{k+2}(T)$ is s.t.

$$
\begin{aligned}
&\left(\mathbb{A}_{T} \boldsymbol{\nabla}^{2} r_{T}^{k+2} \underline{\mathrm{v}}_{T}, \boldsymbol{\nabla}^{2} w\right)_{T}=\left(v_{T}, \operatorname{div} \operatorname{div} \mathbb{A}_{T} \boldsymbol{\nabla}^{2} w\right)_{T} \\
&+\sum_{F \in \mathcal{F}_{T}}\left(\boldsymbol{v} \boldsymbol{\nabla}, F,\left(\mathbb{A}_{T} \boldsymbol{\nabla}^{2} w\right) \boldsymbol{n}_{T F}\right)_{F} \\
&-\sum_{F \in \mathcal{F}_{T}}\left(v_{F}, \operatorname{div} \mathbb{A}_{T} \boldsymbol{\nabla}^{2} w \cdot \boldsymbol{n}_{T F}\right)_{F} \\
& \text { for all } w \in \mathbb{P}^{k+2}(T), \text { with closure condition } \\
& \pi_{T}^{1}\left(r_{T}^{k+2} \underline{\mathrm{v}}_{T}-v_{T}\right)=0
\end{aligned}
$$

■ By the definition of $\underline{\mathrm{I}}_{T}^{k}$ it holds, for all $v \in H^{2}(T)$ and all $w \in \mathbb{P}^{k+2}(T)$,

$$
\begin{aligned}
& \left(\mathbb{A}_{T} \boldsymbol{\nabla}^{2} r_{T}^{k+2} \underline{I}_{T}^{k} v, \boldsymbol{\nabla}^{2} w\right)_{T}=\left(\mathbb{J}_{T}^{\ell} v, \operatorname{div} \operatorname{div} \mathbb{A}_{T} \boldsymbol{\nabla}^{2} w\right)_{T} \\
& +\sum_{F \in \mathcal{F}_{T}}\left(\boldsymbol{\pi}_{F}^{\ell^{\prime}}(\boldsymbol{\nabla} v),\left(\mathbb{A}_{T} \boldsymbol{\nabla}^{2} w\right) \boldsymbol{n}_{T F}\right)_{F} \\
& -\sum_{F \in \mathcal{F}_{T}}\left(\pi_{F}^{\not K} v, \operatorname{div} \mathbb{A}_{T} \boldsymbol{\nabla}^{2} w \cdot \boldsymbol{n}_{T F}\right)_{F} \\
& =\left(\mathbb{A}_{T} \boldsymbol{\nabla}^{2} v, \boldsymbol{\nabla}^{2} w\right)_{T}
\end{aligned}
$$

Local deflection reconstruction II

■ As a result, for $v \in H^{2}(T)$,

$$
\begin{gathered}
\left(\mathbb{A}_{T} \nabla^{2}\left(r_{T}^{k+2} \underline{\mathrm{I}}_{T}^{k} v-v\right), \nabla^{2} w\right)_{T}=0 \quad \forall w \in \mathbb{P}^{k+2}(T) \\
\pi_{T}^{1}\left(r_{T}^{k+2} \underline{\mathrm{I}}_{T}^{k} v-v\right)=0 \\
\Downarrow \\
r_{T}^{k+2} \circ \underline{I}_{T}^{k}=\varpi_{T}^{k+2}
\end{gathered}
$$

■ Thus, $r_{T}^{k+2} \circ \underline{I}_{T}^{k}$ has optimal H^{s}-approximation properties

Global problem I

■ For all $T \in \mathcal{T}_{h}$, we define the local bilinear form $\mathrm{a}_{T}: \underline{\mathrm{U}}_{T}^{k} \times \underline{\mathrm{U}}_{T}^{k} \rightarrow \mathbb{R}$ by

$$
\mathrm{a}_{T}\left(\underline{\mathrm{u}}_{T}, \underline{\mathrm{v}}_{T}\right):=\left(\mathbb{A}_{T} \nabla^{2} r_{T}^{k+2} \underline{\mathrm{u}}_{T}, \nabla^{2} r_{T}^{k+2} \underline{\mathrm{v}}_{T}\right)_{T}+\mathrm{s}_{T}\left(\underline{\mathrm{u}}_{T}, \underline{\mathrm{v}}_{T}\right)
$$

■ The stabilization term $\mathrm{s}_{T}: \underline{\mathrm{U}}_{T}^{k} \times \underline{\mathrm{U}}_{T}^{k} \rightarrow \mathbb{R}$ is s.t.

$$
\begin{aligned}
\mathrm{s}_{T}\left(\underline{\mathrm{u}}_{T}, \underline{\mathrm{v}}_{T}\right):= & \frac{\mathcal{A}_{T}^{+}}{h_{T}^{4}}\left(\pi_{T}^{k}\left(r_{T}^{k+2} \underline{\mathrm{u}}_{T}-u_{T}\right), \pi_{T}^{k}\left(r_{T}^{k+2} \underline{\mathrm{v}}_{T}-v_{T}\right)\right)_{T} \\
& +\frac{\mathcal{A}_{T}^{+}}{h_{T}} \sum_{F \in \mathcal{F}_{T}}\left(\boldsymbol{\pi}_{F}^{k}\left(\boldsymbol{\nabla} r_{T}^{k+2} \underline{\mathrm{u}}_{T}-\boldsymbol{u} \boldsymbol{u}_{, F}\right), \boldsymbol{\pi}_{F}^{k}\left(\boldsymbol{\nabla} r_{T}^{k+2} \underline{\mathrm{v}}_{T}-\boldsymbol{v}_{\nabla, F}\right)\right)_{F} \\
& +\frac{\mathcal{A}_{T}^{+}}{h_{T}^{3}} \sum_{F \in \mathcal{F}_{T}}\left(\pi_{F}^{k}\left(r_{T}^{k+2} \underline{\mathrm{u}}_{T}-u_{F}\right), \pi_{F}^{k}\left(r_{T}^{k+2} \underline{\mathrm{v}}_{T}-v_{F}\right)\right)_{F}
\end{aligned}
$$

■ Polynomial consistency: since $r_{T}^{k+2} \underline{I}_{T}^{k} v=\varpi_{T}^{k+2} v=v$ for all $v \in \mathbb{P}^{k+2}(T)$,

$$
\mathrm{s}_{T}\left(\underline{\mathrm{I}}_{T}^{k} v, \underline{\mathrm{w}}_{T}\right)=0 \quad \forall \underline{\mathrm{w}}_{T} \in \underline{\mathrm{U}}_{T}^{k}
$$

Global problem II

■ Define the following global space with single-valued interface unknowns:

$$
\underline{\mathrm{U}}_{h}^{k}:=\left(\underset{T \in \mathcal{T}_{h}}{X} \mathbb{P}^{k}(T)\right) \times\left(\underset{F \in \mathcal{F}_{h}}{X} \mathbb{P}^{k}(F)^{2}\right) \times\left(\underset{F \in \mathcal{F}_{h}}{X} \mathbb{P}^{k}(F)\right)
$$

- A global bilinear form is assembled element-wise:

$$
\mathrm{a}_{h}\left(\underline{\mathrm{u}}_{h}, \underline{\mathrm{v}}_{h}\right):=\sum_{T \in \mathcal{T}_{h}} \mathrm{a}_{T}\left(\underline{\mathrm{u}}_{T}, \underline{\mathrm{v}}_{T}\right)
$$

Discrete problem

Find $\underline{\mathrm{u}}_{h} \in \underline{\mathrm{U}}_{h, 0}^{k}:=\left\{\underline{\mathrm{v}}_{h} \in \underline{\mathrm{U}}_{h}^{k}: v_{F}=0, \boldsymbol{v}_{\nabla, F}=\mathbf{0}\right.$ for any $\left.F \in \mathcal{F}_{h}^{\mathrm{b}}\right\}$ s.t.

$$
\mathrm{a}_{h}\left(\underline{\mathrm{u}}_{h}, \underline{\mathrm{v}}_{h}\right)=\left(f, v_{h}\right)
$$

with $v_{h \mid T}=v_{T}$ for all $T \in \mathcal{T}_{h}$

Global problem III

- Define on $\underline{\mathrm{U}}_{h, 0}^{k}$ the following norm

$$
\begin{aligned}
\left\|\underline{\mathbf{v}}_{h}\right\|_{\mathbb{A}, h}:=\sum_{T \in \mathcal{T}_{h}}(& \left\|\mathbb{A}_{T}^{1 / 2} \nabla^{2} v_{T}\right\|_{T}^{2}+\frac{\mathcal{A}_{T}^{+}}{h_{T}} \sum_{F \in \mathcal{F}_{T}}\left\|\boldsymbol{v}_{\nabla, F}-\boldsymbol{\nabla} v_{T}\right\|_{F}^{2} \\
& \left.+\frac{\mathcal{A}_{T}^{+}}{h_{T}^{3}} \sum_{F \in \mathcal{F}_{T}}\left\|v_{F}-v_{T}\right\|_{F}^{2}\right)^{1 / 2}
\end{aligned}
$$

- The global bilinear form a_{h} is coercive and bounded:

$$
\left\|\underline{\mathrm{v}}_{h}\right\|_{\mathbb{A}, h}^{2} \lesssim \mathrm{a}_{h}\left(\underline{\mathrm{v}}_{h}, \underline{\mathrm{v}}_{h}\right) \lesssim\left\|\underline{\mathrm{v}}_{h}\right\|_{\mathbb{A}, h}^{2} \quad \forall \underline{\mathrm{v}}_{h} \in \underline{\mathrm{U}}_{h, 0}^{k}
$$

- The global bilinear form a_{h} is consistent: for all $v \in H^{k+3}(\Omega) \cap H_{0}^{2}(\Omega)$,

$$
\sup _{\underline{\mathrm{w}}_{h} \in \underline{\mathrm{U}}_{h, 0}^{k} \backslash\left\{\underline{0}_{h}\right\}} \frac{\left(\operatorname{div} \operatorname{div} \mathbb{A} \boldsymbol{\nabla}^{2} v, w_{h}\right)-\mathrm{a}_{h}\left(\underline{\mathrm{I}}_{h}^{k} v, \underline{\mathrm{w}}_{h}\right)}{\left\|\underline{\mathrm{w}}_{h}\right\|_{\mathbb{A}, h}} \lesssim h^{k+1}|v|_{H^{k+3}(\Omega)}
$$

Energy-error estimate

- Define the global deflection reconstruction $r_{h}^{k+2}: \underline{\mathrm{U}}_{h}^{k} \rightarrow L^{2}(\Omega)$ s.t., for all $\underline{\mathrm{v}}_{h} \in \underline{\mathrm{U}}_{h}^{k}$,

$$
\left(r_{h}^{k+2} \underline{\mathrm{v}}_{h}\right)_{\mid T}=r_{T}^{k+2} \underline{\mathrm{v}}_{T} \quad \forall T \in \mathcal{T}_{h}
$$

- Define the following stabilization seminorm on $\underline{\mathrm{U}}_{h}^{k}$

$$
\left|\underline{\mathrm{v}}_{h}\right|_{\mathrm{s}, h}^{2}:=\sum_{T \in \mathcal{T}_{h}} \mathrm{~s}_{T}\left(\underline{\mathrm{v}}_{T}, \underline{\mathrm{v}}_{T}\right)
$$

Theorem (Energy-error estimate)

Let $u \in H_{0}^{2}(\Omega)$ and $\underline{\mathrm{u}}_{h} \in \underline{\mathrm{U}}_{h, 0}^{k}$. Assume the additional regularity $u \in H^{k+3}(\Omega)$. Then, there is $C>0$ depending on \mathbb{A}, but independent of h, s.t.

$$
\left\|\mathbb{A}^{1 / 2} \nabla_{h}^{2}\left(r_{h}^{k+2} \underline{\mathbf{u}}_{h}-u\right)\right\|+\left|\underline{\mathrm{u}}_{h}\right|_{\mathrm{s}, h} \leqslant C h^{k+1}|u|_{H^{k+3}(\Omega)}
$$

- Choosing $k=1$ we recover the HCT error estimate

L^{2}-error estimate

- To infer a $\operatorname{sharp} L^{2}$-error estimate, we assume biharmonic regularity: For all $q \in L^{2}(\Omega)$, the solution $z \in H_{0}^{2}(\Omega)$ to

$$
\left(\mathbb{A} \boldsymbol{\nabla}^{2} z, \boldsymbol{\nabla}^{2} v\right)=(q, v) \quad \forall v \in H_{0}^{2}(\Omega)
$$

satisfies the a priori estimate

$$
\|z\|_{H^{4}(\Omega)} \leqslant C_{\text {bihar }}\|q\|,
$$

with $C_{\text {bihar }}>0$ only depending on Ω

Theorem (L^{2}-error estimate)

Let $u \in H_{0}^{2}(\Omega)$ and $\underline{\mathrm{u}}_{h} \in \underline{\mathrm{U}}_{h, 0}^{k}$. Assume biharmonic regularity, $f \in H^{k+1}\left(\mathcal{T}_{h}\right)$, and $u \in H^{k+3}(\Omega)$. Then, there is $C>0$ depending on \mathbb{A}, but independent of h, s.t.

$$
\left\|r_{h}^{k+2} \underline{\mathrm{u}}_{h}-u\right\| \leqslant C h^{k+3}\left(\|u\|_{H^{k+3}(\Omega)}+\|f\|_{H^{k+1}\left(\mathcal{T}_{h}\right)}\right)
$$

Numerical examples I

- We solve the biharmonic equation on $\Omega=(0,1) \times(0,1)$, for

$$
u(x, y)=x^{2}(1-x)^{2} y^{2}(1-y)^{2}
$$

$$
\longrightarrow-k=1 \quad \multimap k=2 \quad \backsim k=3
$$

(a) Triangular

(b) Cartesian

(c) Hexagonal

Figure: Energy error vs. meshsize for three different meshes

Numerical examples II

- We solve the biharmonic equation on $\Omega=(0,1) \times(0,1)$, for

$$
u(x, y)=x^{2}(1-x)^{2} y^{2}(1-y)^{2}
$$

$$
\rightarrow-k=1 \quad \longrightarrow k=2 \quad \longrightarrow k=3
$$

Figure: L^{2}-error vs. meshsize for three different meshes

Conclusions \& perspectives

Conclusions

- We presented a new nonconforming method based on a primal formulation
- Choosing $k=1$ is enough to get a quadratic energy error and a quartic L^{2}-error
- Mechanical equilibrium principles are reproduced at the discrete level

Perspectives

- Consider the case of simply supported plates:

$$
u=0 \quad \text { and } \quad\left(\mathbb{A} \boldsymbol{\nabla}^{2} u\right) \boldsymbol{n} \cdot \boldsymbol{n}=0 \quad \text { on } \partial \Omega
$$

- Consider a variant based on a dual or mixed formulation
- Consider the case of Reissner-Mindlin plates

Thanks for your attention

Discrete PVW \& Laws of action-reaction I

■ Let $T \in \mathcal{T}_{h}$ be fixed, and $\boldsymbol{M}_{T}:=-\mathbb{A}_{T} \nabla^{2} u$

- At the continuous level
- The principle of virtual work holds:

$$
\begin{gathered}
\text { For all } v \in \mathbb{P}^{k}(T), \\
-\left(\boldsymbol{M}_{T}, \boldsymbol{\nabla}^{2} v\right)_{T}+\sum_{F \in \mathcal{F}_{T}}\left(\boldsymbol{M}_{T} \boldsymbol{n}_{T F}, \boldsymbol{\nabla} v\right)_{F}-\sum_{F \in \mathcal{F}_{T}}\left(\operatorname{div} \boldsymbol{M}_{T} \cdot \boldsymbol{n}_{T F}, v\right)_{F}=(f, v)_{T}
\end{gathered}
$$

- The following laws of action-reaction hold, for $F \in \mathcal{F}_{T_{1}} \cap \mathcal{F}_{T_{2}}$:

$$
\boldsymbol{M}_{T_{1}} \boldsymbol{n}_{T_{1} F}+\boldsymbol{M}_{T_{2}} \boldsymbol{n}_{T_{2} F}=\mathbf{0}, \quad \operatorname{div} \boldsymbol{M}_{T_{1}} \cdot \boldsymbol{n}_{T_{1} F}+\operatorname{div} \boldsymbol{M}_{T_{2}} \cdot \boldsymbol{n}_{T_{2} F}=0
$$

- The solution to the discrete problem satisfies discrete counterparts of the above statements

Discrete PVW \& Laws of action-reaction II

- Define the space

$$
\underline{\mathrm{D}}_{\partial T}^{k}:=\left(\underset{F \in \mathcal{F}_{T}}{X} \mathbb{P}^{k}(F)^{2}\right) \times\left(\underset{F \in \mathcal{F}_{T}}{\times} \mathbb{P}^{k}(F)\right)
$$

and the boundary difference operator $\underline{\delta}_{\partial T}^{k}: \underline{\mathrm{U}}_{T}^{k} \rightarrow \underline{\mathrm{D}}_{\partial T}^{k}$ s.t., for all $\underline{\mathrm{v}}_{T} \in \underline{\mathrm{U}}_{T}^{k}$,

$$
\begin{aligned}
\underline{\delta}_{\partial T}^{k} \underline{\mathbf{v}}_{T} & \equiv\left(\left(\delta_{\nabla, F}^{k} \underline{\mathbf{v}}_{T}\right)_{F \in \mathcal{F}_{T}},\left(\delta_{F}^{k} \underline{\mathbf{v}}_{T}\right)_{F \in \mathcal{F}_{T}}\right) \\
& :=\left(\left(\boldsymbol{v}_{\boldsymbol{\nabla}, F}-\boldsymbol{\nabla} v_{T}\right)_{F \in \mathcal{F}_{T}},\left(v_{F}-v_{T}\right)_{F \in \mathcal{F}_{T}}\right)
\end{aligned}
$$

- Define now the residual operator

$$
\underline{\mathrm{R}}_{\partial T}^{k} \equiv\left(\left(\boldsymbol{R}_{\nabla, F}^{k}\right)_{F \in \mathcal{F}_{T}},\left(R_{F}^{k}\right)_{F \in \mathcal{F}_{T}}\right): \underline{\mathrm{U}}_{T}^{k} \rightarrow \underline{\mathrm{D}}_{\partial T}^{k}
$$

s.t., for all $\underline{\mathrm{v}}_{T} \in \underline{\mathrm{U}}_{T}^{k}$ and all $\underline{\alpha}_{\partial T} \equiv\left(\left(\boldsymbol{\alpha}_{\nabla, F}\right)_{F \in \mathcal{F}_{T}},\left(\alpha_{F}\right)_{F \in \mathcal{F}_{T}}\right) \in \underline{\mathrm{D}}_{\partial T}^{k}$,

$$
\begin{aligned}
\left(\underline{\mathrm{R}}_{\partial T}^{k} \underline{\mathrm{v}}_{T}, \underline{\alpha}_{\partial T}\right)_{0, \partial T} & \equiv \sum_{F \in \mathcal{F}_{T}}\left(\left(\boldsymbol{R}_{\nabla, F}^{k} \underline{\mathrm{v}}_{T}, \boldsymbol{\alpha}_{\nabla, F}\right)_{F}+\left(R_{F}^{k} \underline{\mathrm{v}}_{T}, \alpha_{F}\right)_{F}\right) \\
& =\mathrm{s}_{T}\left(\left(0, \underline{\delta}_{\partial T}^{k} \underline{\mathrm{v}}_{T}\right),\left(0, \underline{\alpha}_{\partial T}\right)\right)
\end{aligned}
$$

Discrete PVW \& Laws of action-reaction III

Lemma (Local principle of virtual work and laws of action-reaction)
Let $\underline{\mathrm{u}}_{h} \in \underline{\mathrm{U}}_{h, 0}^{k}$ be the unique solution to the discrete problem and, for all $T \in \mathcal{T}_{h}$ and all $F \in \mathcal{F}_{T}$, define the discrete moment and shear force

$$
\begin{aligned}
\mathcal{M}_{T F}^{k}\left(\underline{\mathrm{u}}_{T}\right) & :=-\left(\left(\mathbb{A} \boldsymbol{\nabla}^{2} r_{T}^{k+2} \underline{\mathrm{u}}_{T}\right) \boldsymbol{n}_{T F}+\boldsymbol{R}_{\nabla, F}^{k} \underline{\mathrm{u}}_{T}\right) \\
\mathcal{S}_{T F}^{k}\left(\underline{\mathrm{u}}_{T}\right) & :=-\operatorname{div} \mathbb{A} \nabla^{2} r_{T}^{k+2} \underline{\mathrm{u}}_{T} \cdot \boldsymbol{n}_{T F}+R_{F}^{k} \underline{\mathrm{u}}_{T}
\end{aligned}
$$

Then, the following discrete counterparts of PVW and laws of action-reaction hold, respectively:

> For any mesh element $T \in \mathcal{T}_{h}$, and for all $v_{T} \in \mathbb{P}^{k}(T)$,
> $\left(\mathbb{A}_{T} \nabla^{2} r_{T}^{k+2} \underline{\mathrm{u}}_{T}, v_{T}\right)_{T}+\sum_{F \in \mathcal{F}_{T}}\left(\boldsymbol{\mathcal { M }}_{T F}^{k}\left(\underline{\mathrm{u}}_{T}\right), \boldsymbol{\nabla} v_{T}\right)_{F}-\sum_{F \in \mathcal{F}_{T}}\left(\mathcal{S}_{T F}^{k}\left(\underline{\mathrm{u}}_{T}\right), v_{T}\right)_{F}=\left(f, v_{T}\right)_{T}$

For any interface $F \in \mathcal{F}_{T_{1}} \cap \mathcal{F}_{T_{2}}$,

$$
\boldsymbol{\mathcal { M }}_{T_{1} F}^{k}\left(\underline{\mathrm{u}}_{T_{1}}\right)+\boldsymbol{\mathcal { M }}_{T_{2} F}^{k}\left(\underline{\mathrm{u}}_{T_{2}}\right)=\mathbf{0}, \quad \mathcal{S}_{T_{1} F}^{k}\left(\underline{\mathrm{u}}_{T_{1}}\right)+\mathcal{S}_{T_{2} F}^{k}\left(\underline{\mathrm{u}}_{T_{2}}\right)=0 .
$$

